
Until you get home, that is, and find out that the
receiver in the box is not capable of [directly] driving

servos. What? You see, the little receiver box was, in
fact, designed to be interfaced with the VEX controller,
so it simply outputs a continuous stream of servo pulse
width data. Figure 1 shows what the output looks like
on a ‘scope.

The pulses are active-low, and each is preceded by
a framing pulse that is about 500 microseconds wide.
Notice that one of the pulses is very wide relative to the
others; nearly nine milliseconds. This is the sync pulse and

by finding this, we can get the position data to the correct
servo. It turns out that using the PPM (pulse position
modulation) is pretty easy. After locating the sync pulse,
we simply wait for a high-going edge and turn on the
first servo. We leave this output on until the signal has
dropped and goes back high again; this is the signal
to move to the next servo. This process continues for
six channels.

The VEX transmitter has two joysticks that give
complete analog control over channels one through four,
and two push buttons each for channels five and six.
With the last two channels, the servo pulse width will be
1.5 milliseconds (center) with neither button pressed. If
the top button is pressed, the servo output drops to 1.0
milliseconds; if the bottom button is pressed, the servo
output bumps up to 2.0 milliseconds. So while we can
control servos with channels five and six, these channels
are limited to three servo positions.

The circuit for converting the PPM stream to usable
servo outputs couldn’t be much simpler — and you can
see this in Figure 2. This is a very generic SX circuit with a
power supply, and connection for the receiver, and header
for the servos. There are two jumpers on the board: one
for selecting the servo power (+5V DC or Vin), and one
for setting the behavior of servo outputs five and six.

DECODING THE PPM STREAM
The first thing we need to do with the PPM stream is

locate the sync pulse. I measured this to be about 8.9

MORE SURPLUS SUCCESS

STAMPAPPLICATIONS
■ BY JON WILLIAMS

PUTTING THE SPOTLIGHT ON BASIC STAMP PROJECTS, HINTS & TIPS

16 May 2008

I MAY HAVE MENTIONED MY FRIEND BRIAN once or twice. Brian’s a great guy
— a super smart IT professional by day and a bring-down-the house DJ by
night. When I lived in Dallas, Brian was a tad jealous because I had Tanner
(geek heaven) within minutes of my home. So, I move back to Los Angeles a
couple years ago and no more Tanner for me (and I miss them). But, what do I
have? That’s right! All Electronics — another gate into geek heaven. Brian was
beside himself; what luck I have with my proximity to fantastic suppliers.
Both Tanner and All are great about stocking new products as well as a
boatload of interesting surplus. One of the cooler products that All carries —
and at a ridiculously low price — is the VEX Robotics Transmitter and Receiver
Add-on kit; brand new and in the box.You just can’t beat that.

■ FIGURE 1. VEX PPM Stream.

milliseconds in duration. That said, all we have to do is wait
for a low-going pulse that is longer than a servo position
pulse; this will let us know we’ve found the sync pulse.

SUB WAIT_SYNC
pulseTmr = 0
DO WHILE PPM = 0

PAUSEUS 10
INC pulseTmr

LOOP
IF pulseTmr < 400 THEN WAIT_SYNC
ENDSUB

The subroutine called WAIT_SYNC takes care of this.
The routine starts by clearing a timer variable (pulseTmr)
and then dropping into a loop that monitors the PPM
input for being low. As long as this input stays low, the
timer will be incremented every 10 microseconds. Note
that timing doesn’t have to be super precise here; all we’re
looking for is a low pulse that couldn’t be a position value.

When the PPM line goes high, loop terminates and
the timer value is checked; if we find a pulse greater
than about four milliseconds, we know that we have sync
and we can return to the caller. If we happen to catch a

position pulse, the routine will run again.
On start-up, we’ll clear the servo outputs and then

check the mode input jumper. As RA.1 has the internal
pull-up enabled, we’ll see a “1” on RA.1 when in standard
servo mode, or a “0” when in what I’m calling “servo
plus” mode. Let’s look at standard mode first.

Start:
SvoPort = %00000000

Main:
IF MJumper = 0 THEN Servo_Plus

‘ ———————————
‘ Standard servo control
‘ ———————————
‘
Standard_Servos:

WAIT_SYNC
svoPntr = %0000_0001
DO

SvoPort = svoPntr
WAIT_HI_LO
WAIT_LO_HI
svoPntr = svoPntr << 1

LOOP UNTIL svoPntr = %0100_0000
GOTO Start

S T A M P A P P L I C A T I O N S

May 2008 17

■ FIGURE 2. VEX Decoder Schematic.

After waiting for the sync pulse, an internal servo
pin pointer (svoPntr) is set to %00000001 to activate the
first servo when applied to port RC. We drop into a loop
where the pointer is written to the port, the program waits
for the 500 microsecond framing pulse to end (high), and
then waits on the timing pulse (low) to finish. To keep the
listing neat, I wrote a couple dirt-simple subroutines for
waiting on the edge transitions:

SUB WAIT_LO_HI
DO WHILE PPM = 0
LOOP
ENDSUB

SUB WAIT_HI_LO
DO WHILE PPM = 1
LOOP
ENDSUB

I deliberately made this program no assembly
required, but if you’re comfortable with assembly
you could easily substitute an embedded instruction.
Remember that SX/B allows the insertion of a single line
of assembly code by prefacing the line with the backslash
character. So, instead of WAIT_LO_HI, we could use:

\ JNB PPM, @$

And instead of WAIT_HI_LO we could use:

\ JB PPM, @$

The @$ means to jump to the current address until
the bit changes.

Back to the servo loop. After the framing and timing
pulses are finished, the servo pointer is shifted left for the
next servo. Once we have shifted this bit to Bit 6 of the
variable, the loop terminates and the program jumps back
to the top. Yes, the board has eight servo outputs (you’ll
see why in a bit) but their VEX transmitter only provides
data for six. If you happen to find a device with a similar
PPM output that handles eight channels, the code is easily
modified.

SERVOS PLUS
I mentioned earlier that the VEX transmitter has two

push buttons [each] for channels five and six — in standard
servo mode, this limits the servo positions for channels
five and six to the center and to either extreme (left and
right). What if we had a robot or animatronic that required
four or less servos and we wanted to use channels five
and six as digital control outputs? How could we do this?

Handling the first four servos is similar to what we’ve
just done. For channels five and six, we’re going to
measure the timing pulse. If that pulse is about 500
microseconds, it means the top button for the channel
was pressed and we can turn the corresponding output
on. If the pulse is about 1,500 microseconds, that means

the bottom button was pressed and we’ll turn the
corresponding output pin off. The only other possibility
is that we measure about 1,000 microseconds; in this
case, we will do nothing with the output.

‘ ————————————
‘ Four servos + two on/off
‘ ————————————
‘
Servo_Plus:

WAIT_SYNC
svoPntr = %0000_0001
DO

SvoPort = SvoPort | svoPntr
WAIT_HI_LO
WAIT_LO_HI
svoPntr = svoPntr << 1
SvoPort = SvoPort & %0011_0000

LOOP UNTIL svoPntr = %0001_0000

Ctrl_Port1:
WAIT_HI_LO
pulseTmr = 0
DO WHILE PPM = 0

PAUSEUS 10
INC pulseTmr

LOOP

IF pulseTmr < 60 THEN
Control1 = IsOn

ELSEIF pulseTmr > 110 THEN
Control1 = IsOff

ENDIF

Ctrl_Port2:
WAIT_HI_LO
pulseTmr = 0
DO WHILE PPM = 0

PAUSEUS 10
INC pulseTmr

LOOP

IF pulseTmr < 60 THEN
Control2 = IsOn

ELSEIF pulseTmr > 110 THEN
Control2 = IsOff

ENDIF

GOTO Main

The servo portion of the loop starts out as before,
but note now that instead of simply writing the value of
svoPntr to the output port, we are ORing with the port.
The reason we have to do this is to protect what is
presently sitting on the output bits corresponding to
channels five and six. Note, too, that there’s one more
line after the pointer is updated. This line clears the servo
output that just ran while maintaining whatever happens
to be sitting on channels five and six.

After completing the servos, the low-going timing
pulses of channels five and six are measured and the
output is updated as determined by the pulse. Pretty
simple, really, and pretty darned useful.

So there we have it: a simple SX circuit that will turn

18 May 2008

that $30 VEX add-on kit into something that can
actually drive servos and digital outputs. One last
note before we move on. As the timing is controlled
by the VEX transmitter, we can actually run this circuit
using the internal 4 MHz clock source. If you do this,
you can leave R3, the OSC socket, and the resonator
off the board. I put them onto mine so I have options
— you can see in the photo of the completed board
(Figure 3) that R3 and the socket are installed, but
the resonator is not.

DOUBLE IT UP
Having such a svelte circuit leaves us with a bit

of a dilemma when using ExpressPCB’s mini-board
service: There’s a ton of unused board space. Should
we let this go to waste? Absolutely not! Let’s double it
up. When I started laying out the board, I found that
the circuit would comfortably fit in half the space of a
standard mini-board. Excellent — let’s just copy-and-paste
and get two boards for the price of one.

Not so fast, there, chief. Before we double-up any
of your boards, we need to do a thorough check of the
layout using a link to the schematic. This will save us a lot
of trouble later; not all (as I found out), but most. Save the
single board file separately so you can come back and
update it if necessary.

I did, and here’s why. While having lunch with my
“networking” pal, Peter, he talked about making generic
boards as generic as possible, and this really is the case
with this board. It dawned on me — especially having just
written a servo animation driver for the Prop-SX — that I
could add another connector and make this board a
standard servo controller.

If you look closely at the
layout, you’ll see that the RJ-11
sits on top of a three-pin header;
this allows me to stuff the board
two different ways based on what
I want. The RJ-11 allows me to
make the standard VEX decoder,
or use phone cable for my input.
If I want to create a standard
servo controller for a BASIC
Stamp or SX project, I’ll replace
the RJ-11 with a three-pin servo
header.

Figure 4 shows a screenshot
from ExpressPCB with the
completed layout for one board.
After this file is saved, it’s a simple
matter of copy, paste, and then
adjust position (while everything
is still highlighted) of the duplicate
parts. Save the double board as a
separate file. And note that once
we’ve doubled things, using the
“Highlight Net Connections” tool

is no longer functional as we have duplicated part
numbers.

Since we did a “background” servo driver last May
I won’t go into that, but what I will show you is how
I created the servo animation driver I mentioned earlier.
Many artists use a program called VSA (Visual Show
Automation) for running props and servo-based
animatronic displays. VSA allows one to integrate servo
movement and sound very easily, and has become a
favorite, especially with its low price (about $50).

VSA uses the SEETRON (Scott Edwards) MiniSSC
protocol as its default. Being a very clever guy, Scott made

S T A M P A P P L I C A T I O N S

May 2008 19

■ FIGURE 3. VEX Decoder Ready For Testing.

■ FIGURE 4. Single Board Layout.

the protocol simple; to change the position of
a servo, the host will send three bytes to the
controller: sync, servo number, position. By
using a virtual UART and servo driver, the
foreground program for a MiniSSC-compatible
servo controller becomes downright trivial:

Start:
‘ center servos
PUT pos, 150, 150, 150, 150, 150, 150, 150,

150

Main:
sync = RX_BYTE
IF sync <> 0xFF THEN Main

chan = RX_BYTE
value = RX_BYTE

Process_Value:
IF chan < 8 THEN

value = value MIN LO_LIMIT
value = value MAX HI_LIMIT
pos(chan) = value

ENDIF

GOTO Main

Yes, that’s it. At Main, we monitor the input
stream until a 0xFF shows up; the next two
bytes are the servo number and position,

Item Description Supplier/Part No.
◗ C1-C2 47 µF Mouser/647-UVR1V470MDD
◗ C3 0.1 µF Mouser/80-C315C104M5U
◗ C4 220 µF Mouser/647-UVR1C221MED
◗ D1 3 mm LED Mouser/859-LTL-4222N
◗ J1 RJ11 Mouser/571-520250-2
◗ JP1-JP2 0.1” pin strip header Mouser/517-6111TG
◗ Jumpers 0.1” shunt Mouser/151-8000-E
◗ OSC* 0.1” pin socket Mouser/506-510-AG90D
◗ PCB ExpressPCB.com
◗ PGM 0.1” R/A header Mouser/517-5111TG
◗ R1 1K Mouser/299-1K-RC
◗ R2, R4 10K Mouser/299-10K-RC
◗ R3* 10K Mouser/299-10K-RC
◗ R5-R12 220 Ω Mouser/299-220-RC
◗ Resonator* 4 MHz Parallax/250-04050
◗ Resonator* 20 MHz Parallax/250-02060
◗ Resonator* 50 MHz Parallax/250-05060
◗ Socket 28 pin Mouser/571-1-390-261-9
◗ TB1 Terminal block, 5 mm Mouser/571-2828362
◗ U1 SX28 Parallax/SX28AC/DP
◗ VR1 LF50CP-5.0 Mouser/511-LF50CP
◗ X1-X9 0.1” pin strip header Mouser/517-6111TG

* = Optional components

Note: JP1, JP2, and X1-X9 are cut from a single 40-pin part.

◗◗ PARTS LIST

20 May 2008

respectively. If the servo number is
valid, the position gets checked
against hard position limits (to
prevent servo damage) and written
to the servo driver. My friends in
the Dallas Personal Robotics
Group have a saying: It’s harder
than it looks. In this case, however,
it really isn’t.

There’s a great lesson here: We
shouldn’t be afraid to explore trails
blazed by others to see if we might
learn what they did. For example,
why did Scott select 0xFF as the sync
value? Because — with the position
units used — that would never be a
valid position value. I know that
this seems terribly obvious, and
yet I want to encourage you not to
take the simple things for granted.
Many of us do and that leads
to unnecessary complications.
Whenever possible, keep things
simple. Simple is fun. Simple is
elegant. Simple is [usually] robust.

Okay, it’s your turn now. There is
still a bit of space on the board —
even the half board — and a useful
exercise might be to add IDC-style
headers so that you can access all of
the RA and RB pins; this would make
the board truly generic. It doesn’t
cost anything but time to experiment
with ExpressPCB, so why not give it a
try? Even if you don’t build the servo
board, what you learn will pay off in
future projects.

Until next time — Happy
Stamping, SX style! NV

RESOURCES

JON WILLIAMS
jwilliams@efx-tek.com

PARALLAX, INC.
www.parallax.com

ALL ELECTRONICS
www.allelectronics.com

EXPRESSPCB
www.expresspcb.com

VISUAL SHOW
AUTOMATION
www.brookshire

software.com

May 2008 21

for Engineers

Mouser_NutsVolts_5-1-08.indd 1 3/26/08 2:53:54 PM

