THE NEON GLOW LAMP

In the day of solid-state technology, the humble neon glow lamp still has much to offer to the experimenter. Besides its luminousness, the glow bulb displays negative resistance behavior. Because of this, it is often found in voltage regulator and relaxation oscillator circuits. Best of all, glow lamps are inexpensive. You can purchase them from advertisers in the Electronics Market place for as little as a nickel each in quantities of several dozen.

Before we look at some interesting glow lamp circuits, let’s review some of the basic operating principles of this versatile component. Knowledge of its operating characteristics will enable you to design your own circuits.

An outline view of a typical glow lamp is shown in Fig. 1. Few electronic components are as structurally simple—a glow lamp consists merely of a gas-filled bulb and a pair of electrodes to which wire leads have been attached. Normally, the resistance of the gas between the two electrodes is so high that the lamp can be considered an open circuit. But when the voltage across the lamp is raised to the critical initial breakdown voltage, the gas ionizes and becomes highly conductive. The ionized gas glows with a characteristic color. Neon, the most common filler gas, glows orange. Argon, which is sometimes used, has a blue glow.

Figure 2 shows the I-V characteristics of a typical neon bulb. Until the breakdown voltage of 300 volts is reached, current through the lamp is very small. (This voltage will vary between 55 and 150 volts for commercially available bulbs.) When the bulb fires, it enters the normal glow region of its I-V curve. In this region, the soft, luminous glow is confined to the negative electrode, and the glow area increases directly with lamp current. The voltage-regulating properties of the neon lamp are self-evident in Fig. 2. A nearly constant voltage drop V0 exists across the lamp even though the current varies over a wide range.

When current is so high that the entire surface of the electrode is covered by the glow, the voltage across the lamp rises. The neon lamp has then entered the abnormal glow region. If lamp current further increases, the lamp is operating in the arc region. Here, the voltage across the lamp drops and the orange-colored discharge becomes a bright point of bluish-white light centered on the cathode (negative) electrode. Prolonged operation in the abnormal glow region, and even a brief incursion into the arc region will destroy the lamp.

Although neon lamps operate at fairly high voltages, they consume small amounts of power, and most commercial devices are rated at a continuous current of 0.1 to 10 mA.

Fig. 1. Sketch of neon lamp’s construction.

Fig. 2. Neon lamp’s I-V characteristic.
Build a Microcomputer System
With This $7.95 Handbook.
At last, a practical, step-by-step
approach to building an operational
microcomputer for a bargain price.
The Ilex Microcomputer Applications
Handbook will guide you through all
shapes of actual design of a working
8080 microcomputer system
including a monitor program.
Both development and OEM systems
are covered in detail.

Some Precautions. Neon glow
lamps are simple to use, but you should
be aware of a few special restrictions.
First, these lamps are subject to what is
called the dark effect. That is, ionization
of the gas is much more easily accom-
plished in the presence of ambient light.
In total darkness, the glow lamp oper-
ates erratically, and its breakdown volt-
age increases significantly. To over-
come this problem, many neon lamps
contain a minute amount of radioactive
gas, which stimulates ionization.

A second operating restriction is the
necessity to avoid excessive operating
voltages. Too much voltage will cause
the lamp to operate in the abnormal
glow or arc region. The third consider-
ation is current limiting. It is necessary
to place a resistor in series with a continu-
ously operated glow lamp. This ballast
resistor limits the current through the
lamp to a safe value. If we assume that
an ionized glow lamp has practically no
resistance but a voltage drop of 80 volts,
Ohm's and Kirchoff's Laws dictate that a
100,000 -ohm ballast resistor will allow a
safe 200 μA to flow through a glow lamp
connected to a 100-volt dc source.

Glow Lamp Circuits. Now that
we've covered some of the basics of
glow lamp operation, let's examine sev-
eral practical circuits. You can use the
miniature dc-dc converter described in
last month's column or a pair of 67-volt
batteries connected in series as a power
supply.

We have
400,000 reels of
great
recording tape to
unload.

$30.00 gets you thirty reels
($275 value), or $12.50 gets you ten
reels ($50 value). Call for quantity
prices. These are government surplus,
and fully guaranteed, professional
quality, Mylar tapes on 10-ft plastic
reels, 1/4" wide, 1 MIL with
3600 feet per reel.

Sounding crazy? We can sell
brand name tapes at these ridiculous
prices because we're the only
supplier who bought up 400,000 reels.

Mail your order, name and
address, with check or money order
(N.Y. residents: add tax to)

AMERICAN SURPLUS TRADING
332 Canal Street
New York, N.Y. 10013
(212) 966-5850

SAVE!

The simplest circuit is the glow-lamp
relaxation oscillator shown in Fig. 3. In
operation, C1 charges through R1 until
the breakdown voltage of the neon lamp
is reached. At that point, C1 discharges
through the lamp and produces an
orange flash. When the voltage across
C1 drops below the voltage necessary to keep the lamp conducting, the lamp goes dark. Then C1 begins to change and the cycle repeats.

To see the glow-lamp flash you will have to use at least a 1-Meohm resistor. Otherwise the flash rate will be faster than the 16 pulses per second discernible by the human eye and the lamp will appear continuously on. Also, use 200-ohm capacitors in this and the following circuits because of the high voltages present.

You can connect an oscilloscope across C1 to verify that the circuit is oscillating if you choose to operate it at audio frequencies. Alternatively, you can connect an 8-ohm speaker between the glow lamp and ground or place the circuit near a radio to actually hear the oscillation frequency or its harmonics.

If you're familiar with neon-lamp relaxation oscillators, you probably know that several circuits like the one shown in Fig. 3 can be cascaded to produce a pseudo-random flashing effect. These circuits are often seen flashing away in electronics labs and are called "do-nothing boxes" or "idiolights."

An astable multivibrator made from two glow lamps is shown in Fig. 4. If we assume that C1 has a lower turn-on voltage than C2, it will turn on first when power has been applied. This permits C1 to charge through R2 and R1. When the voltage across C1 exceeds the turn-on voltage of C2, R2 turns on and it turns off. Now C1 charges through R2 and R2 until its charge fires R1. Lamp 2 then turns off, C1 begins charging through R2, and the cycle repeats.

The circuits described here incorporate a relaxation oscillator, and you can easily vary the repetition rates of the oscillators by altering the values for the resistor and capacitor which, together with the lamp, form the time constant (R1 and C1 in Fig. 3, etc.). Higher values of resistance or capacitance will slow the repetition rate. But try to keep R1 above 100,000 ohms, and C1 below 1 pF.

If you can do anything with these circuits, be sure to observe standard safety precautions. Even a 67½-volt battery can deliver a sharp shock, and if the shock isn't strong enough, the resulting reflex action may dash your wrist or elbow into your workbench or chair.

For best results and optimum safety, stick to batteries or miniature high-voltage power supplies like the one described in last month's column. If you must use line power, never operate a glow-lamp circuit from the ac line without using a 1:1 isolation transformer.

DECEMBER 1976

WAHL Clipper Corporation

1000 W. HIGHLAND AVE. CHICAGO, ILLINOIS 60620

Drill

Circle No. 24 on FREE INFORMATION CARD
A Do-Nothing Box

Q. I want to duplicate a Do-Nothing box that a friend of mine has, but it is painted in plastic so I can't see the circuit. The neon lamps just blink in a random fashion. How is this done?

A. Use the circuit at the left. Capacitors should be between 0.1 and 1 μF (low leakage); resistors between 330 k and 2.2 meg-ohms. Use a pair of series-connected 675- or 90-volt dry batteries.
A Word About
GLOW-LITE DIVISION

Glow-Lite is a producer of neon indicator and circuit component lamps, used primarily in appliances and electronic equipment.

In addition to the manufacture of neon lamps, Glow-Lite does a broad range of custom lamp assemblies which include a variety of wire attachments and terminations. Our capabilities in lamp design and production enable us to provide products tailored to fit individual customer's applications.

Glow-Lite's dedication to quality and customer service has made it the leader in the neon lamp industry. This adherence to strict quality and service criteria assures uninterrupted performance for continued customer satisfaction.

For additional information contact:
Glow-Lite Division
P.O. Box 698
Hwy. 77 South
Pauls Valley, Oklahoma 73075
405-239-6541 • TWX 910-830-6590

CIRCUIT FOR MEASUREMENT OF BREAKDOWN, MAINTAINING, EXTINGUISHING VOLTAGE AND LAMP CURRENT:

-2-

Figure 1

R² — Resistance Divider
V² — Voltmeter
A — Ammeter (megohm or less than 1% of source impedance)
R² — For A.C. measurements use thermocouple meter
V² — Voltmeter/Voltmeters (megohm or more input resistance)
R² — (10 to 30 megohms), to be used to supply tendency of lamp to oscillate when using electrostatic voltmeter.
APPLICATION AND EVALUATION OF GLOW LAMPS

DEFINITION OF TERMS

ABNORMAL GLOW — the area of operation where the change in current causes a greater change in voltage.
AGING — the process in which a lamp is subjected to higher than design current for periods greater than 48 hours to stabilize its electrical characteristics.
BREAKDOWN VOLTAGE — the voltage required to make the lamp glow (measured at V 2, Figure 1).
CORONA — the visible glow of ionized gas surrounding the lamp.
DARK EFFECT — the breakdown voltage can be greatly increased when a lamp is in a darkened environment. By introducing a mild radio-active additive this effect can be reduced.
DEIONIZATION TIME — the elapsed time required for a lamp to return to its static breakdown voltage after current ceases to flow.
DESIGN CURRENT — the current at which rated life values are based.
DIFFERENTIAL VOLTAGE — the difference between the breakdown and maintaining voltage.
END OF LIFE — indicator applications define end of life when the light output reaches 50% of its original value. Circuit component applications define end of life when the electrical characteristics are out of specifications.
EXTINGUISHING VOLTAGE — the voltage across the lamp when the lamp ceases to glow.
ION — the atom which has a deficiency or excess of electrons.
IONIZATION — the method of segregating an electron from an atom creating a positive charge and a free electron.
IONIZATION TIME — the elapsed time to achieve normal glow after a voltage greater than the breakdown voltage is applied to a lamp.
MAINAINING VOLTAGE — the voltage across the lamp after breakdown occurs.
NEGATIVE RESISTANCE — the area of operation where there is an increase in current while the voltage decreases.
NORMAL GLOW — the area of operation where the greatest change in current occurs with a minimum change in voltage.
POLARIZATION — the change in the electrical characteristics of the electrodes after a lamp is subjected to continued operation at one polarity.
SPATTERING — the depositing of the metal cathode material on the inside walls of the glass container. This occurs when the lamps are operated at high currents.
STANDING RISE — the increase in breakdown voltage that occurs when lamps are stored for extended periods of time.
STATIC BREAKDOWN VOLTAGE — the voltage required to make the lamp glow when the following conditions exist: 5-50 ft. of light, a minimum of 24 hours of nonconductance, and freedom from electrostatic fields.

PHYSICAL CHARACTERISTICS

GLASS — the containing envelope is manufactured from lead glass which is annealed during the manufacturing cycle. This glass is extremely durable and has a high impact strength. If the glass is subjected to gamma radiation it will darken and become brittle.
GASES — the invisible gases used in the manufacture of glow lamps are the rare or inert gases. Although neon is the basic gas, the following gases may be used in various proportions to achieve particular characteristics: helium, argon, krypton, and krypton 85.
ELECTRODES — the basic metal for all glow lamp electrodes is nickel. Breakdown voltage can be increased by increasing the spacing between the electrodes. All electrodes are coated with emissive materials which enable the lamp to have a lower breakdown voltage and a greater uniformity of photometric characteristics. The length and diameter of the electrode determine the length of glow and current carrying ability respectively.
RESISTANCE — all glow lamps require a series resistance to prevent the lamp from burning out. The resistance value depends on the supply voltage, current, and the desired lamp characteristics. Resistors attached indicator lamps are not recommended for use in temperatures exceeding 200°F because of the possibility of resistor deterioration.
PRESSURE — the increase of the internal gas pressure will result in a higher breakdown voltage, longer life, and reduced light output. If the gas pressure is increased too much the corona will become extremely unstable.
ELECTROSTATIC AND RF EFFECTS — the existence of an electrostatic field in the proximity of a glow lamp may cause the lamp to ignite at lower voltage levels. The presence of high intensity radio frequency may cause the lamp to ignite without any applied voltage.
TEMPERATURE — the operation of indicator lamps in ambient above 200°F is not recommended. The recommended temperature range for circuit component lamps is -60°F to +185°F. Glow lamps have a negative temperature coefficient. The maintaining voltage will decrease with an increase in temperature.

-3-
INDICATOR LAMPS

HIGH BRIGHTNESS

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>ASA*</th>
<th>MAX LAMP LENGTH INCHES (MM)</th>
<th>WIRE LENGTH INCHES (MM)</th>
<th>WATTS NOM</th>
<th>MAX BREAKDOWN VOLTAGE</th>
<th>CIRCUIT VOLTS</th>
<th>LIFE (HOURS) (AVG)</th>
<th>RESISTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C-1</td>
<td>A1C</td>
<td>500 (12.7)</td>
<td>1 (25.4)</td>
<td>1/7</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>A1C-2</td>
<td>A1C</td>
<td>500 (12.7)</td>
<td>2 (50.8)</td>
<td>1/7</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>C2A-1</td>
<td>C3A</td>
<td>750 (19.1)</td>
<td>1 (25.4)</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>C2A-2</td>
<td>C2A</td>
<td>750 (19.1)</td>
<td>2 (50.8)</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>C2A-5</td>
<td>---</td>
<td>625 (15.9)</td>
<td>1 (25.4)</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>C2A-6</td>
<td>---</td>
<td>625 (15.9)</td>
<td>2 (50.8)</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>D2A-1</td>
<td>D2A</td>
<td>940 (23.9)</td>
<td>1 (25.4)</td>
<td>1/3</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>D2A-2</td>
<td>D2A</td>
<td>940 (23.9)</td>
<td>2 (50.8)</td>
<td>1/3</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
</tbody>
</table>

STANDARD BRIGHTNESS

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>ASA*</th>
<th>MAX LAMP LENGTH INCHES (MM)</th>
<th>WIRE LENGTH INCHES (MM)</th>
<th>WATTS NOM</th>
<th>MAX BREAKDOWN VOLTAGE</th>
<th>CIRCUIT VOLTS</th>
<th>LIFE (HOURS) (AVG)</th>
<th>RESISTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B-1</td>
<td>A1B</td>
<td>500 (12.7)</td>
<td>1 (25.4)</td>
<td>1/25</td>
<td>65</td>
<td>90</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>A9A-1</td>
<td>A7A</td>
<td>750 (19.1)</td>
<td>1 (25.4)</td>
<td>1/15</td>
<td>65</td>
<td>90</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>A9A-2</td>
<td>A9A</td>
<td>750 (19.1)</td>
<td>2 (50.8)</td>
<td>1/15</td>
<td>65</td>
<td>90</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>A1A-4</td>
<td>---</td>
<td>1,060 (26.9)</td>
<td>1 (25.4)</td>
<td>1/15</td>
<td>65</td>
<td>90</td>
<td>120</td>
<td>25,000</td>
</tr>
</tbody>
</table>

GREEN NEON

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>ASA*</th>
<th>MAX LAMP LENGTH INCHES (MM)</th>
<th>WIRE LENGTH INCHES (MM)</th>
<th>WATTS NOM</th>
<th>MAX BREAKDOWN VOLTAGE</th>
<th>CIRCUIT VOLTS</th>
<th>LIFE (HOURS) (AVG)</th>
<th>RESISTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2B</td>
<td>---</td>
<td>750 (19.1)</td>
<td>1.250 (31.8)</td>
<td>1/4</td>
<td>65</td>
<td>98</td>
<td>120</td>
<td>20,000</td>
</tr>
</tbody>
</table>

All lamps are available with radioactive additive to reduce "dark effect". Wire leads are cut to length per customer specifications. Leads supplied with cleaned copper finish. Tinned leads are available. D.C. life is 60% of A.C. values. Lamp length can be varied within cataloged range. Series resistance can be varied to achieve desired light or life characteristics.
Circuit Components

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>D.C. Breakdown Voltage</th>
<th>D.C. Maintaining Voltage</th>
<th>Design Current (mA)</th>
<th>Max Lamp Length (Inches) (mm)</th>
<th>Life (Hours) (AFL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE23</td>
<td>60-90</td>
<td>50 avg</td>
<td>0.3</td>
<td>750 (19.1)</td>
<td>6,000</td>
</tr>
<tr>
<td>NE68</td>
<td>60-90</td>
<td>52-65</td>
<td>0.3</td>
<td>940 (23.9)</td>
<td>6,000</td>
</tr>
<tr>
<td>NE75</td>
<td>60-90</td>
<td>55</td>
<td>0.4</td>
<td>750 (19.1)</td>
<td>10,000</td>
</tr>
<tr>
<td>NE76</td>
<td>68-76</td>
<td>50-60</td>
<td>0.4</td>
<td>940 (23.9)</td>
<td>2,000</td>
</tr>
<tr>
<td>NE80</td>
<td>60-80</td>
<td>50-58</td>
<td>0.3</td>
<td>940 (23.9)</td>
<td>6,000</td>
</tr>
<tr>
<td>NE81</td>
<td>64-90</td>
<td>50-60</td>
<td>0.3</td>
<td>940 (23.9)</td>
<td>6,000</td>
</tr>
<tr>
<td>NE82</td>
<td>63-76</td>
<td>50-60</td>
<td>1.5</td>
<td>940 (23.9)</td>
<td>2,000</td>
</tr>
<tr>
<td>NE83</td>
<td>60-100</td>
<td>60 avg</td>
<td>5.0</td>
<td>940 (23.9)</td>
<td>5,000</td>
</tr>
<tr>
<td>NE86</td>
<td>55-90</td>
<td>55 avg</td>
<td>1.5</td>
<td>940 (23.9)</td>
<td>2,000</td>
</tr>
<tr>
<td>NE98</td>
<td>65-80</td>
<td>50</td>
<td>0.3</td>
<td>750 (19.1)</td>
<td>6,000</td>
</tr>
<tr>
<td>CC-2</td>
<td>180-250</td>
<td>100 max</td>
<td>—</td>
<td>750 (19.1)</td>
<td>—</td>
</tr>
</tbody>
</table>

All lamps are available with radioactive additive to reduce "dark effect". Wire leads are cut to length per customer specifications. Leads supplied with cleaned copper finish. Tinmed leads are available. D.C. life is 60% of A.C. values. Lamp length can be varied within cataloged range. Series resistance can be varied to achieve desired light or life characteristics.

Glow-Lite Division's new Neon Flasher Lamp provides 20 times more brightness than any conventional neon lamp. Designed specifically to provide flashing visual indication in sonar devices, the Neon Flasher operates at 1200 VDC and provides 5,000 average life hours at 5 ma with a 20 percent duty cycle. However, it can easily be used in any electronic equipment requiring ultrabrightness, long life and reliability.

Specifications

- Maximum Starting Voltage: 1000 VDC
- Maximum Maintaining Voltage: 300 VDC
- Life: 5,000 hours
- Design Current: 5 ma
BASED GLOW LAMPS

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>ASA #</th>
<th>MAX. OVERALL LENGTH INCHES (MM)</th>
<th>WATTS NOM.</th>
<th>MAX. BREAKDOWN VOLTAGE</th>
<th>LIFE (HOURS) (KVD)</th>
<th>RESISTOR</th>
<th>BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE-2J</td>
<td>C9A</td>
<td>940 (23.9)</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>25,000</td>
<td>30K</td>
</tr>
<tr>
<td>NE-2D</td>
<td>C7A</td>
<td>940 (23.9)</td>
<td>1/15</td>
<td>65</td>
<td>90</td>
<td>25,000</td>
<td>100K</td>
</tr>
<tr>
<td>NE-4</td>
<td></td>
<td>1.750 (44.5)</td>
<td>1/15</td>
<td>65</td>
<td>90</td>
<td>25,000</td>
<td>100K</td>
</tr>
<tr>
<td>NE-84</td>
<td>K1A</td>
<td>1.031 (26.2)</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>25,000</td>
<td>30K</td>
</tr>
</tbody>
</table>

7-3 1/4" MINIATURE BAYONET BASE NEON LAMP

<table>
<thead>
<tr>
<th>CATALOG NUMBER</th>
<th>ASA #</th>
<th>MAX. OVERALL LENGTH INCHES (MM)</th>
<th>BASE</th>
<th>WATTS NOM.</th>
<th>MAX. BREAKDOWN VOLTAGE</th>
<th>FORWARD VOLTAGE</th>
<th>LIFE (HOURS) (KVD)</th>
<th>RESISTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE51</td>
<td>B1A</td>
<td>1.186 (30.1)</td>
<td>MIN. BAYONET</td>
<td>1/15</td>
<td>65</td>
<td>90</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>NE51-R</td>
<td></td>
<td>1.186 (30.1)</td>
<td>MIN. BAYONET</td>
<td>1/15</td>
<td>65</td>
<td>90</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>NE51H</td>
<td>B2A</td>
<td>1.186 (30.1)</td>
<td>MIN. BAYONET</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
<tr>
<td>NE51H-R</td>
<td></td>
<td>1.186 (30.1)</td>
<td>MIN. BAYONET</td>
<td>1/4</td>
<td>95</td>
<td>135</td>
<td>120</td>
<td>25,000</td>
</tr>
</tbody>
</table>

*EXTERNAL RESISTOR NOT INCLUDED
**RESISTOR INCLUDED IN BASE

All lamps are available with radioactive additive to reduce "dark effect". Series resistance can be varied to achieve desired light or life characteristics. D.C. life is 60% of A.C. values. Lamp length can be varied with cataloged range.

-6-
All lamps are available with radioactive additive to reduce "dark effect".
Wire leads are cut to length per customer specifications.
Leads supplied with cleaned copper finish.
Tinned leads are available.
D.C. life is 60% of A.C. values.
Lamp length can be varied within cataloged range.
Series resistance can be varied to achieve desired light or life characteristics.
You might tell your kids it's a scintillation counter detecting cosmic messages from outer space. Or, you can casually mention to friends the fact that it's a miniaturized digital computer reading out answers in binary computations. Chances are they'll believe every word you say; only you will know that this box is actually "nonsense."

The "Nonsense Box" consists of eight neon lamp flashing circuits flashing at various independent time rates, and all powered by a single 90-volt battery. The current drain imposed by this circuit is around 65 microamperes and the battery should last well over a year. Of course, this is one of the advantages (?) of the Nonsense Box—there is no switch to turn it off.

How It Works. Each flashing circuit consists of a neon glow lamp, a 0.5-μF 200-volt capacitor and a resistor of one of four specified values from 17 to 8.2 megohms. Take a look at the first flashing circuit (NB1, C1, and R1). Since there is no current flowing in the circuit, there is no voltage drop across R1, or the resistor R9 in series with the battery. This permits NE4 to fire (conduct) setting up a voltage drop across R1 and charging C1. As the charge across C1 rises, the voltage across the neon bulb, drops, and NE1 is extinguished. Now C1 slowly discharges through R1 (the old R/C time constant effect) until sufficient voltage builds up across the neon bulb to fire it and cause the whole process to repeat itself.

Even though the flashing circuits are doubled up (C1/R1 and D5/R5 have the same values), small capacitor and resistor mismatches insure that no two flashing circuits have the same time constant. Resistor R9 helps insure the random nature of the firing pattern.

Construction. The Nonsense Box can be constructed as a single box (add a labeling board to the front to identify the locations of the switches and controls). The box may be of such a size as to be easily handheld. Or it may be incorporated in a more imposing display case.

By Alan L. Danzis
be made of either metal or wood. It should have sufficient space inside to comfortably hold the neon bulb sockets and permit the battery to be mounted rigidly in place. The latter measure is especially necessary since many people will try to shake the Nonsense Box to make it turn off.

Care should be exercised in laying out the holes for mounting the neon lamps. The spacing is not critical, but uniformity is desirable. The lamps could be arranged to make a person's initial, or in the square fashion shown in the photo.

Wiring is noncritical—except the battery polarity may be reversed. It is suggested that one terminal of each of the eight lamp sockets be wired together. Solder one end of R9 to this common connection and leave the other end temporarily free. Now solder one end of resistors R1-R8 and capacitors C1-C8 to each of the unused lamp socket terminals according to the wiring schematic. Bring all 16 Free leads from these capacitors and resistors to a common bus bar and solder. The two leads from the battery connect to the free end of R9 and the common bus bar.

The Nonsense Box should start flashing immediately—and only you will know that it's all "nonsense."
Neon Lamp as a Transistor Switch

A. I would like to operate a neon lamp from a transistor switch. I have heard that there is a way to do this using low-voltage (therefore low-cost) silicon switching transistors. Do you know of such a circuit?

B. You can't just stick a neon lamp in series with a conventional transistor since the high voltage required for the neon would "pop" the transistor. However, you can use the circuit shown here. Resistors R1 and R2 are selected so that the drop across R2 is safe for the transistor and the drop across R1 is less than the striking voltage of the neon lamp. When the base of Q1 is grounded, the lamp is off. A positive base signal turns on Q1 and the lamp. A 25-volt transistor and an 8.5-volt half-wave supply are needed.

NEON BLINKER

The circuit shown here is an edible multivibrator employing two neon tubes that alternate on and off. We will delight children when used as the blinking eyes of a Santa Claus, jack-o-lantern or Xmas toy and can be used to create eye-catching window displays. Type NE-2 or NE-51 neon tubes can be employed, and the operating voltage 90 to 110 voltage can be derived from a 120-volt transformer. Battery packs can be derived from a 12-volt photovoltaic battery, a line power supply, or a small dc-to-dc converter and a low-voltage battery. Current drain is very low, so long battery life can be expected. The flash rate can be changed by varying the values of the resistors (don't reduce below 100,000 ohms) and capacitance. Use a non-polarized capacitor with an adequate voltage rating. —H. Miller, Sandown, PA.