

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

1
All Rights Reserved –Copyright 2013 KibaCorp Inc.

 The ISaAC Technical Reference Manual

1.0 Introduction
Welcome to ISaAC, a small form factor programmable 32-bit Experimenter! The ISaAC or, Ideal System

and Application Circuit, can be used as either a “Plug and Play” add-on board for the Raspberry Pi (Raspi)

or as a standalone Arduino compatible 32-bit Microcontroller Experimenter. In either case, ISaAC is

designed for rapid application development and ease of use. In this manual explain configuring and

using ISaAC “Plug and Play” capability with the Raspi, and for those who do not use Raspi how to

configure and operate ISaAC standalone.

Although challenging problems can be handled with the Raspi alone, adding ISaAC allows the Raspi to

work with greater capabilities, in near real time, across a larger number of applications (see figure 1).

No special programming is required, as the ISaAC comes pre-programmed for the Raspi with a high level

Application Programming Interface (API). The API provides the Raspi new functionality: Raspi power

control and external system power +5VDC on/off, an on board EEPROM for read/write of both data and

ISaAC API command scripts, a 100 year Real Time clock calendar (RTCC) with multiple programmable

alarm capabilities, 4 analog digital converter (ADC) conversion inputs, a programmable digital analog out

(DAC) signal output, 13 digital I/O, and dual pulse width modulation (PWM) outputs for servos and

sound. In this manual, we will cover how to integrate ISaAC with the Raspi, and then work through API

examples using Linux minicom terminal program. Other API methods with Raspi besides minicom are to

exercise the API with BASH (BASH = Bourne Again Shell) or Python. BASH is Linux shell programming to

execute API scripts from the command line. Python programming with ISaAC, and using the Python

libraries, can be used to work more challenging and fun applications.

In a standalone configuration (not integrated with Raspi, see figure 2) you can exercise the API through

PC running TeraTerm or a similar terminal emulation capability through a COM port. You need to wire

ISaAC serial communication pins to a serial to USB interface. We will show you how. Because the API is

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

2
All Rights Reserved –Copyright 2013 KibaCorp Inc.

standard across all configurations, the API exercises are similar for both standalone and Raspi

configurations.

Figure 1: ISaAC with Raspi Block Diagram

Figure 2: ISaAC Standalone with PC

The ISaAC board comes fully assembled and tested with the API. The ISaAC is shown mounted onto the

Raspi in figure 3.

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

3
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 3: ISaAC and Raspi

ISaAC uses a clock controllable 40 MHz 32-bit PIC32 Microcontroller. It is a fabricated as a small SMT

card that attaches to the Raspi GPIO header and can be optionally reinforced with mounting hardware.

ISaAC supports an accessible Raspi GPIO pin connector as well as an add-on Arduino-style expansion

interfaces (see figures 4). Additionally, ISaAC provides unobstructed physical access to the Raspi CSI

cable ports through on-board slot cut outs.

ISaAC Accessible interfaces

• (9) Digital I/O programmable

– DO,D1,D2,D8,D9,D10,D11 or 0,1,2,8,9,10.11,12,13

– D9 and D10 can be configured as PWM

– API uses pin numbers 00, 01,02,03,04,05,06,07,08,09,10,11,12,13

• (4) Analog In (10 bit resolution) or Digital I/O programmable

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

4
All Rights Reserved –Copyright 2013 KibaCorp Inc.

– A0,A1,A2,A3

– API uses pin numbers 14,15,16,17

• (1) Analog Out (DAC) (10 bit resolution)

– VOUT (buffered), DACOUT (un-buffered)

• An accessible I2C Bus: pins A4 (data) A5 (clock)

– Bus contains EEPROM and DAC

• Raspi GPIO pin breakout

• Micro USB for +5V power

• Raspi Power Select Jumper for switchable control of power to Raspi

• Separate external +5V power switch for external circuits.

• An ICSP (In Circuit Serial Programmer) interface

– Custom flash programming and debug

Figure 4: ISaAC board

2.0 API Overview
ISaAC uses the Raspi GPIO serial port (19200 8N1) for API communications. API commands are ASCII

upper case characters and are echoed back for easy debugging. Command verification from ISaAC is

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

5
All Rights Reserved –Copyright 2013 KibaCorp Inc.

simply ‘A’ (acknowledge) or ‘N’ (not acknowledge). There are 19 unique API commands. Detailed

descriptions are contained in Appendix A.

API
Commands Function

? query state of digital input pin

A set pin to analog input/read

CR Read RTCC clock

CS Set RTCC clock

D output to DAC

ER single EEPROM read

EW single EEPROM write

H set output pin high

I Configure pin for digital input

L set output pin low

M Help Menu

O Configure pin for digital output

P set pin to PWM output

Q build script

T Set alarm

U PI power cycle on alarm

V view EEPROM

X execute script

Z Z – precision pulse

Figure 3: API

3.0 Setting up ISaAC with the Pi
The first thing to do is prepare the Raspi for the ISaAC board. We have to reconfigure the Raspi serial

port (ttyAMA0) as it is set by default to be an administrative terminal. There are two ways to do this:

 Method 1: Edit the /boot/cmdline.txt file.

o Remove the following: “console=ttyAMA0, 115200 kgdboc=ttyAMA0, 115200”

o Save and close the file

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

6
All Rights Reserved –Copyright 2013 KibaCorp Inc.

 Method 2: Insert the Raspi SD card into your computer

o edit cmdline.txt file as above

The next step will prevent the Raspi from outputting boot information over the serial line. If this is left

on, the serial buffer can get overwhelmed with this data and it might be difficult to successfully send

commands to the ISaAC initially.

 Open /etc/inittab for editing

 Place a hash (#) in front of the line with: TO:23:respawn:/sbin/getty –L ttyAMA0115200 vt100

At this point, initiate shutdown of the Raspi using the command “sudo shutdown now -h”. After

shutdown, attach the ISaAC board to the Raspi. Place the jumper onto the “RPI PWR” spot on the ISaAC

and attach the micro USB power cable to the ISaAC. The ISaAC uses a red led for +3.3V power indication

and a blue led for relay on/off indication. Both boards should now power up and these leds should be

on. Ensure your Raspi is functioning normally via your method of choice (i.e. SSH or HDMI port).

One final configuration step is required before we proceed. Open minicom “sudo minicom -s”. You

need to request superuser permissions to make changes to the configuration and to access the onboard

serial port. If you don’t have minicom installed, simply type “sudo apt-get install minicom”.

Once minicom is open, chose the “Serial port setup” menu item, and the press “A” to change “Serial

Device” to “/dev/ttyAMA0”. Press “E” to adjust the serial port settings. Scroll through the menu with

“A” and “B” until you find a baud rate of 19200. Ensure the “Current:” line at the top reads “19200

8N1”. Press <Enter> to leave this screen then press <Enter> again to get to the main menu. Choose the

menu item “Save setup as dfl” to make this the default setting, now choose the menu item “Exit”, which

will dump you into the active minicom terminal. Now it’s time to have some fun.

4.0 Running ISaAC with Pi
A few precautions before proceeding:

 If you are bread boarding your circuits with a separate power supply, make sure to link the

power supply ground and ISaAC ground pins. For most simple experiments, the ISaAC should be

able to supply power to the breadboard.

 For routine purposes use only the ISaAC board to supply power to the Raspi. If independent

cables are used to power the Raspi, make sure the “RPI PWR” jumper is removed and both

boards use the same power source. Failure to do so risks permanent damage to both boards.

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

7
All Rights Reserved –Copyright 2013 KibaCorp Inc.

5.0 Configuring ISaAC standalone

5.1 Setup Equipment Requirements

1. Acroname S27-USB-SERIAL- adapter for ISaAC API communication with PC

USB using TeraTerm Software Emulator

2. USB A-to-mini-B extension cable for interfacing PC to a UART S27 device

3. (4) jumpers to connect S27-USB-SERIAL pins to ISaAC

4. ISaAC board with Micro USB to standard type A USB to supply power to

ISaAC

5. TeraTerm Terminal Emulator (see Appendix C software installation

instructions)

5.2 Powering up ISaAC

The ISaAC receives +5VDC from its micro USB and converts this to +3.3VDC for on

board use. Any USB port can work with ISaAC as it requires less that 100 ma to

operate. Plug in micro USB cable in to ISaAC and the other side into your PC. Both

the Red (“power on” indicator) and Blue LED (“relay on” indicator) should be

turned on.

5.3 Set up ISaAC Standalone configuration

Figure 4: Acroname S27-USB-SERIAL

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

8
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Once TeraTerm software has been correctly installed (see Appendix C for

instructions) and software driver for S27-USB Serial interface is installed (again

see Appendix C for details), you ready to begin to exercise the ISaAC using the API

contained in the Flash code.

1. Connect S27-USB-Serial interface to PC USB using a Mini-B to A cable.

2. Bring up TeraTerm and select interface for serial port identified for

S27-USB- Serial Interface. Configure for 192008N1. Go into terminal

mode. Use CAPS LOCK on when communicating with ISaAC.

3. Connect four wires from S27-USB-Serial Interface as shown. See figure

figures 7, 8, 9 for descriptions and pictures of setups.

a. RX Arduino Interface pin 6 to S27-USB-Serial SRX (data out)

b. TX pin of 10 GPIO to S27-USB-Serial STX (data in)

c. +3VDC Arduino to S27-USB-Serial VCC

d. GND Arduino to S27-USB-Serial GND

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

9
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 7: Prototype Setup

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

10
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 8: Prototype Continued

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

11
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 9: USB to UART adapter

4. Connect power via USB to ISaAC using micro USB cable as described

above. You are now ready to conduct the next series of API tests using

ISaAC API.

5. Make sure CAP ON is locked. Type character ‘M’ followed by return

into TeraTerm active window. ‘M’ stands for MENU; you should

something similar to the following response (figure 10). This confirms

communications is working between ISaAC and PC TeraTerm. If

unsuccessful see debugging detailed suggestions below:

a. Check hardware connection between ISaAC and S27-USB. Try a

loop back by shorting RX/TX on S27-USB-SERIAL to check

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

12
All Rights Reserved –Copyright 2013 KibaCorp Inc.

connectivity. In this configuration whatever characters you type

into TeraTerm active window should echo back.

b. Check TeraTerm serial port setting to confirm 192008N1 and

correct COM port is used for ISaAC

Figure 10: ISaAC 'M' Menu Response

6.0 ISaAC API Examples
These API examples are shown using Raspi configuration with minicom, but apply ISaAC standalone.

6.1 HELLO WORLD

This little board provides a lot of additional features and we will step through basic examples for each.

First, we have the classic “HELLO WORLD” example. Plug in an LED, using the appropriate resistor to any

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

13
All Rights Reserved –Copyright 2013 KibaCorp Inc.

of peripheral pins on the ISaAC (D0-D13 or A0-A3). Refer to the circuit diagram below.

Open the minicom terminal as a superuser.

Let’s assume we have connected to pin 1 on our ISaAC board. First, we need to set the pin to an output

by typing O01 into the terminal; you should receive an “A” as a response. Now type H01, the light

should turn on now if it hasn’t already. Type L01 and the light will turn off. We have set pin 1 to an

output with the first command, then we set that output to high (on), and then we set it to low (off).

These pins can assume 3 states, high-output, low-output, or input; otherwise known as tri-state general

purpose input output (GPIO). All of the pins on the ISaAC can be commanded in this way. A few of the

pins have more special functions as well, which we will cover later.

 Set pin to output – “O” then 2 digits for pin

 Set pin to high – “H” then 2 digits for pin

 Set pin to low – “L” then 2 digits for pin

6.2 USER INPUT

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

14
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Let’s work another example using another pin as an input. With a momentary push button and wire up

your breadboard according to the following circuit.

Setup pin 2, as an input, using the API commands I02. Now we can query the state of the pin using the?

02 command. If the switch is not pressed your will get a response of A1, meaning “ACKNOWLEDGE” and

“1” for high. If the switch is pressed you will get a response of A0. As in the previous example this

functionality works on all of the ISaAC GPIO pins.

 Set pin to input – “I” two digits for pin

 Read input state – “?”two digits for pin

6.3 ANALOG MEASUREMENT

Measuring digital states is very useful, but having the ability to measure analog signals adds another

dimension of utility. The ISaAC has 4 pins that have 10-bit analog digital conversion. These pins are

labeled A0 to A3. An example circuit can be created with a thumb potentiometer following the

schematic below.

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

15
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Pins A0 to A3 are designated as pins 14, 15, 16, and 17 in the API. We will use pin A0 for this example.

Set the pin to an input using the command I14. Next, set the pin to an analog state using the command

A14. This will set the pin and return the current value as a 10-bit integer. Play around with the

potentiometer and send the A14 command again to get a feel for the different readings. You should see

a range from 0 to 1023. This function is limited to the pins listed above.

 Set analog pin to input – “I” two digits for pin (14 to 17)

 Set pin to analog mode, read state – “A” two digits for pin (14 to 17)

6.4 PULSE WIDTH MODULATION

ISaAC also provides a pair of pins (9 and 10) that can provide pulse width modulation (PWM). This signal

can be provided to power circuits to drive motors, high powered LEDs, speakers, etc. it can also be used

directly to power a low-power LED. PWM comes in two flavors with the ISaAC:

 100Hz fixed-frequency with programmable duty cycle

 Variable frequency (50Hz to 20KHz) with programmable duty cycle

Go back to the circuit we wired up for the “HELLO WORLD” experiment. Move your pin connection from

pin 1 to pin 10. Set pin 10 to an output (“O10”). Choose an 8-bit integer duty cycle for PWM (0 = 0%,

255 = 100%). Send the command P10127 for a half lit LED, P10000 to turn the LED off, and P10255 to

turn the LED all the way on.

 Set pin to output – “O” either pin 09 or 10

 Set 100Hz duty cycle – “P” integer from 000 to 255

Running PWM at 100Hz is great for many applications; however some peripherals may require different

frequencies, including motors, servos, and speakers. Standard servos usually run at 50Hz. Sending a

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

16
All Rights Reserved –Copyright 2013 KibaCorp Inc.

pulse duration between 1ms and 2ms will cause the servo to rotate fully from one direction to the other

(refer to your servo’s documentation). You will need an op-amp chip to drive the servo, I’m using the TI

LM324N quad op-amp (if you are short this part or the servo for that matter, check the Nuts and Volts

sponsors storefronts).

Notice we are using the 5V power from the ISaAC this time to power the servo. No special level shifters

are required in this case because the comparator is supplying power to the servo, always keep in mind

some pins on the ISaAC are not 5V tolerant. To move the servo using a 50Hz frequencies with pin 9 send

the following command: Z09000500000001500. This is pin 09, a frequency of 00050Hz, a delay of

0000ms, and a pulse of 001500 micro seconds. To move the servos through its range of motion try

changing the last 4 digits to 1200 and 1800. Some servos are a different, try modifying the last 4 digits

to determine the range of your servo. One additional note, the frequency chosen is shared between the

two PWM pins, so changes to one will affect the other.

 Set pin to output – “O” either pin 09 or 10

 Send precision pulse command:

“Z” (2 digits pin) (5 digits frequency Hz) (4 digits delay in ms) (6 digits pulse width in µs)

6.5 ANALOG SIGNAL OUTPUTGENERATION

The ISaAC is outfitted with a 10-bit digital to analog (DAC) signal generation chip. This is connected to

two special pins on the board labeled DACOUT and VOUT. Generally, the VOUT pin should be used as it

provides an amplified output. Using the DAC is simple; the command is D followed by a 10-bit integer

(0000 to 1023). This will create a signal of 2.5V divided by the value you provide, 1023 will be 2.5V and

0000 will be 0.0V. This is a distinct function from PWM as it provides a steady voltage at the given value

instead of 3.3V pulses at the requested duty cycle. You can hook up our “HELLO WORLD” circuit to the

DAC, but only about a settings from 750 to 1023 will actually illuminate a high-efficiency LED.

6.6 REALTIME CLOCK READ / WRITE

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

17
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Another cool feature is the real time clock calendar. The Raspi relies on a network connection for time

information. If you have a deep space exploration project, you can rely on ISaAC for accurate time over

100 years from now. First the clock must be set using the CS command. The format of the command is

CS(2 digits for year)(2 digits for day)(2 digits for month)(2 digits for seconds)(2 digits for minutes)(2 digits

for hours)(1 digit for day of week 0=Sunday). Reading the clock is much simpler, just send the CR

command and you receive the current time and date as a 16 character string for current time including

day of the week, hours, minutes, seconds, (i.e. “Fri 13:11:03 “), and then on a separate line, a 16

character string for current date to include year, month, day of month and year (i.e. “JUL 05, 2013”). If

the power is removed, the date information will be used. For a low power application using a battery

pack, use the ISaAC to keep time and have the Raspi sleep until the horsepower is needed. In a

subsequent article we show you how to set the date on the Raspi using the “date --set" command, once

you recover the time information from the ISaAC.

6.7 REALTIME CLOCK ALARM

Having the real-time is great for time stamping collected data, but ISaAC has an additional alarm feature.

This allows you cycle power on the Raspi or simply receive a text alarm at a given time in the future at a

specified rate. Setting the alarm will only work after the clock has been set using the CS command.

Note, that power to the Raspi can be umpired manually and then the pentagonal breakout on the ISaAC

can be used to hardwire a separate power toggling function. To implement the alarm function, type T,

then a number for the rate, and then a number for the mode character.

Time
frequency

Rate
Character

 Mode Mode
Character

Off 0 One Time Trigger 1

1 second 1 One Time Trigger / Power Cycle 2

10 seconds 2 Repeated Trigger 3

1 minute 3

10 minutes 4

1 hour 5

1 day 6

1 week 7

1 month 8

1 year 9

For example, a command of T33, would issue an alarm every minute. You would see a string returned of

ALARM-M plus the time/date stamp. Issuing a T32 command would cycle power on the Raspi every

minute; probably not the best idea. As stated above in this case an alternate device could be wired to

the breakout for this sort of “high” frequency triggering. Another command is available for cycling the

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

18
All Rights Reserved –Copyright 2013 KibaCorp Inc.

power to the Raspi. The U command is issued with a time delay and a time to power back up. For

example U99997, waits 9999ms to shut down the Raspi and then will power it up one week later. The

first four digits are the delay in ms before shutting down the Raspi and the last digit follows the time

frequency convention above for when to power back on.

6.8 EEPROM READ/WRITE/EXECUTE

The ISaAC also sports a 128 Kb EEPROM on board. This allows the user to store API scripts up to 32 ASCII

characters or data in the onboard nonvolatile memory. The scripting is composed in byte-wise write

commands. Send EW then 000 to 127 for the memory address and 000 to 255 for the ASCII character

code to write. For example to write the command A14, send the commands EW000065 (address 000,

character A), EW001049 (address 001, character 1), EW002052 (address 2, character 4). You can find an

ASCII table at http://www.asciitable.com. Use the numbers from the DEC column. To read the currently

stored script, simply type ER. To execute the currently stored script type X and two digits (00 to 31) for

the number of characters to execute. To execute the command above, simply type X03. You will get

feedback the script is executing, plus the normal command feedback. Note, you only get 32 characters

of execution; the rest of the memory is intended for nonvolatile storage of data.

If you get lost while you are playing around, simply type M (for MENU), to get a list of commands with a

brief description.

7.0 ISaAC API Screen Shots
To facilitate API understand several screen shot of API operation are shown using a Tera Term Serial

Emulator. Detailed API command descriptions are contained in Appendix A. Figure is the result of ‘M’

command (Help Screen)

http://www.asciitable.com/

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

19
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 5: (M) command help screen

Figure 6 shows the use of the ‘EW’ EEPROM write to location 127 data 64, ‘ER’ EEPROM read from

location 127 with ‘A’ and 64. The ‘D’ or DAC output command is also showed. A ‘D’1023 causes a +2.5V

level to appear on output of DAC. The ‘D’511 changes the level to +1.25V. The ‘D’255 changes the level

to +.625 V, while ‘D’0000 zeroes the DAC output.

Figure 6: ER EW and DAC

Figure 7 shows the use of the ‘O’ 00 causing pin D0 to be an output. The ‘H’00 and ‘L’00 toggle DO from

high to low. The ‘I’01 causes pin D1 to be an input. The ‘?’01 reads the value of this digital input and

returns A1 meaning ‘ACK’ and a high level. The ‘A’14 causes A0 to be an analog input, the results are

immediately returned as A1023 or ‘ACK’ with a ADC count of 1023. The next couples of commands are

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

20
All Rights Reserved –Copyright 2013 KibaCorp Inc.

reading the same analog input as the voltage level is changing

Figure 7 I/O Operations

Figure 8 shows the use of ‘CS’ RTCC clock setting, ‘CR’ RTCC clock read. Once the RTCC has been set, the

‘T’ command for alarm trigger can be used. The ‘T’20 causes a ten second alarm single shot. The results

in “ALARM-S” report. The ‘T’21 causes a ten second alarm continuous. This results in “ALARM-M”

reports every 10 seconds.

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

21
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 8 Clock and Alarm operations

Figure 9 script build, view, and execute

In figure 9 we build an 8 character script, ,using the ‘Q’ command, which the first four character are

‘O00R’ setting D0 to output, ‘R’ is the ‘echoed ‘delimiter, and the second four are ‘H00R’ setting D0

output to high level. The ‘Q’ command takes the eight and programs them in EEPROM script location

starting at address 0. Only one script is allowed and a script can be up to 32 characters long. This new

script will ‘clobber’ any older scripts. The next command ‘V’ is used to viewed the stored script, again

the value 8 is used for size. Finally the command ‘X’ is used to execute the script, again 8 is used for size.

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

22
All Rights Reserved –Copyright 2013 KibaCorp Inc.

As the script is executed you see the ‘O’ command executed and ‘ACKed’ and then the ‘H’ command

then proceeds it.

Figure 10: U command for power cycle of PI

Figure 10 shows the ‘CS’ and ‘CR’ command being executed to set and read the RTCC. The next

command is ‘U’. The string ‘U10002’ delays the PI shut down by 1000 milliseconds, alerts the system a

shutdown is pending. The +5V power relay is opened. The ISaAC is still running and has a type 2 rate

alarm trigger set. There are many types of rate available for minutes, hours, days , months, even year.

Type 2 is just several minutes. Once the alarm trigger occur the ISaAC will close the +5V relay to the

Raspberry PI , turning its power back on. This is a one-time event. ISaAC outputs a message once this

happens.

8.0 Updating the API version
The ISaAC API will be periodically updated with new functionality. This API will be issued under new

version numbers. All updated API will be published and downloadable via web site

http://www.kibacorp.com. The updates will be posted as PIC32 MPLABX object code and can be used to

immediately program ISaAC using a Microchip PICKIT3 programmer / debugger and the ISaAC provided

In Circuit Serial Programmer Interface (ICSP). As the ISaAC comes preconfigure the PICKIT3 is not

required for board operation. A PIC32MX boot loader capability for the ISaAC is under development.

This will allow ISaAC to be programmed automatically by Raspberry Pi.

http://www.kibacorp.com/

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

23
All Rights Reserved –Copyright 2013 KibaCorp Inc.

 Appendix A –Detailed API Command Syntax

1. The 2 Character Command Set (M or Menu Help)

The format for 2 character command is:

 Command (single character)=’M’

 Delimiter (1 character) 0x0d – this is the ASCII Carriage Return

This command response issues an ‘A’ (ACK) or ‘N’ (NACK). If ‘A’ then ISaAC will clear and home screen

and the issue current version number and a list of all available commands.

2. The 3 Character Command Set (‘CR’) Clock read for RTCC

The format for 3 character command is show below. Prior to using the special command ‘CR’

(CLOCK READ), ‘CS’ (CLOCK SET) must be issued.

 Command (2 character ‘CR’)

 Delimiter (1 character) 0x0d

This command causes the ISaAC to read the on-board ISaAC Real Time Clock Calendar (RTCC) and then

issues a 16 character string response to the PI for current time including day of the week, hours,

minutes, seconds, (i.e. “Fri 13:11:03 “), and then on a separate line, a 16 character string for current

date to include year, month, day of month and year (i.e. “JUL 05, 2013”). This data can be captured and

used within your Raspberry Pi’s application.

3. The 4 Character Command Set (‘T’) for RTCC Alarm Trigger

The format for 4 character command is show ,prior to using ‘T’ a special command the ‘CS’ (CLOCK SET)

must have been be issued.

 Command (1 character ‘T’)

 Rate Character: 0 = off, 1 = every 1 sec, 2= every 10 sec, 3= every 1 minute, 4=every 10

minute, 5 = every 1 hour, 6= every 1 day, 7 =every 1 week, 8 = every 1 month, 9 = every 1 year.

 Mode Character: 1 =one time trigger, 2 = one time trigger with power up of Raspberry

PI, 3= continuous trigger

 Delimiter (1 character) 0x0d

This command causes the ISaAC to turn on or turn off (Rate = 0) the Real Time Clock Calendar (RTCC)

alarm. A one-time trigger will output to the PI upon alarm a string “ALARM-S”. A continuous trigger will

output the string “ALARM-M” upon each alarm condition being met.

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

24
All Rights Reserved –Copyright 2013 KibaCorp Inc.

4. The 4 Character Command Set (I, O, H, L,’?’ A) for ISaAC analog and digital I/O

The format for 4 character command is:

 Command (single character)

 Channel or pin (2 characters)

 Delimiter (1 character) 0x0d

● 4 character Commands and responses:

○ I or O-set digital to input or output, response ACK= ‘A’ or NACK =’N’

■ Available D0-D13 pin designators are 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10,

11, 12, and 13. You can convert A0 to A5 to digital by using pin designators 14,

15, 16, 17, 18, and 19

○ H-set digital out high, response ACK =’A’ or NACK =’N’

■ Write a high digital value to designated pin.

○ L-set digital out low , response ACK=’A’/NACK= ‘N’

■ Write a low digital value to designated pin.

○ ? -read and report digital value on pin- response ACK-‘A’ (1,0) or NACK- ‘N’

■ Reads a digital value (0 or 1) for the associated pin and returns it as integer

value.

○ A- set pin to analog input and read current binary value on that pin (works only for

channels 14-19, or A0 to A5) response ACK-‘A’ (0-1024) or NACK- ‘N’

■ Executes a 10 bit ADC conversion on selected channel. The pin is configured for

analog. The function returns an integer value representing the ADC value from 0

to 1024. Only one analog channel is enabled at a time, available pins are 14, 15,

16, 17, 18 ,and 19

○ Any channel or pin designation uses two ASCII char ‘1’ ‘9’ for channel 19

■ Example -‘0’ and ‘1’ or ‘01’ for channel 1 and ‘0’ and ‘0’ or ‘00’ for channel 0

5. The 4 Character Command Set (V, X) V-for EEPROM Script viewing and X for Script Execution

The format for 4 character commands for ‘V’, ‘X’ is:

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

25
All Rights Reserved –Copyright 2013 KibaCorp Inc.

 Command (single character) =’V’ for viewing, ‘X’ for execution

 Number of Command Characters (2 characters) 00 to 31 (ASCII)

 Delimiter (1 character) 0x0d

The ‘V’ reads the designated number of characters stored as a script in EEPROM. Only one script can be

stored in EEPROM it starts at address 0 and goes to address 31 for a total script size of 32 command

bytes. The rest of EEPROM is available for user data storage using ‘EW’ command. .Delimiters appear

during view as ‘R’.

The ‘X’ command proceeds with retrieving the designated number of characters from EEPROM storage

and executing them one at a time as a normal system entry over the serial port. It puts out two

messages during the process “retrieving script” and then “executing script”. During execution the

system responds normally with echo of characters and ‘A’ responses.

6. The 6 Character Command Set (D) for ISaAC DAC Output

The format for 6 character command for Digital Analog Converter (DAC) is:

 Command (single character) =’D’ for DAC Out

 DAC Value (4 characters) 0000 to 1023 (ASCII)

 Delimiter (1 character) 0x0d

The ‘D’ or DAC command, outputs a 10 bit count (0 to 1023 decimal) as 4 ASCII character equivalents to

DAC located on ISaAC I2C bus. The output voltage is set to 2.5 volts/1024 for LSB *count.

7. The 6 Character Command Set (‘ER’) for ISaAC EEPROM Read

The format for 6 character command for EEPROM Read ‘ER’ is:

 Command (dual character) =’ER’ for EPPROM Read

 EEPROM address (3 characters)- 000 to 127

 Delimiter (1 character) 0x0d

The ‘ER’ or EEPROM command, reads the 128X8 EEPROM on board the ISaAC. It uses the 3 ASCII

characters to form an 8 bit binary value for the EEPROM address. If the command is acknowledged an

‘A’ and a three ASCII character (or eight bit result) is returned, otherwise an ‘N’ or NACK is returned.

8. The 7 Character Command Set (U) for ISaAC Raspberry PI power cycle

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

26
All Rights Reserved –Copyright 2013 KibaCorp Inc.

The format for 7 character command for ‘U’ is:

 Command (single character) =’U’

 Delay before shutdown in milliseconds (4 characters) – 0000 to 9999

 Trigger time to power on (1 = every 1 sec, 2= every 10 sec, 3= every 1 minute, 4=every

10 minute, 5 = every 1 hour, 6= every 1 day, 7 =every 1 week, 8 = every 1 month, 9 = every 1 year)

 Delimiter (1 character) 0x0d

The ‘U’ or command performs a controlled power cycle on Raspberry PI. A ‘CS’ command must be issued

prior to a ‘U’ command. The ‘U’ waits for the specified delay before shutting down power to Raspberry

PI (turning off +5V relay). Before it does this it sends out message “shutting down power”. The power

up cycle occurs within the ISaAC RTCC alarm established by the rate parameter. This is a one-time trigger

that then turns on the relay for Raspberry PI power. An “ALARM-S” message string is sent to PI once the

power has returned.

9. The 7 Character Command Set (P) for ISaAC PWM

The format for 7 character command for PWM ‘P’ is:

 Command (single character) =’P’ for PWM

 Channel or pin (2 characters) – 09 (D9) or 10 (D10)

 Duty Cycle (3 characters) – 000 to 255

 Delimiter (1 character) 0x0d

The ‘P’ or PWM command, with current API accepts pins D9 and D10. The duty cycle can range from 0

(off) to 255 (on all the time). The command uses the PIC32 programmable peripheral system or PPS (D9)

to output compare 1 OC1 using Timer 2 and D10 to output compare 3 OC3 using Timer 3. The PWM

frequency is set to approximately 100 Hz to be compatible with Arduino.

10. The 9 Character Command Set (EW) for ISaAC EEPROM Write

The format for 6 character command for PWM ‘P’ is:

 Command (dual character) =’EW’ for EEPROM Write

 EEPROM address (3 characters)- 000 to 127

 EEPROM Data (3 characters) = 000 to 255

 Delimiter (1 character) 0x0d

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

27
All Rights Reserved –Copyright 2013 KibaCorp Inc.

The “EW” or EEPROM write command, writes a byte of data (represented by 3 ASCII character for

decimal equivalent 000 to 255) to a EEPROM address (represented by 3 ASCII character for hex

equivalent 000 to 127). It returns an ‘A’ for ACK or ‘N’ for NACK.

11. The 16 Character Command Set (‘CS’) for ISaAC RTCC Clock Initialization and Set

The format for 16 character command is:

 Command (2 character) =’CS’ for RTCC Clock set

 Date Setting (6 characters) - years(tens, units), days (tens, units), months (tens,

units),

 Time Setting (6 characters) -Seconds (units, tens), Minutes (units, tens), Hours

(units, tens)

 Day of week (1 character) 0 to 6 (0 =Sunday, 6 = Saturday)

 Delimiter (1 character) 0x0d

This command response issues an ‘A’ or ‘N’. If ‘A’ then ISaAC will initialize and set the ISaAC RTCC. If

‘N’ no RTCC action will occur.

12. The Up to 32 Character Command Set (‘Q’) for Script build

The format for 16 character command is:

 Command (1 character) =’Q’

 Script size (two characters) 00 to 31

 Actual Script commands including 0x0d to build out script size.

This command immediately collects user type scripts to the character amount specified. Once the

character count is reached the script is programmed into EEPROM starting at location 0. Only one

script can be stored at a time. Once stored the script can be view and executed using ‘V’ and ‘Q’

commands.

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

28
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Appendix B –ISaAC Hardware Description
A schematic for ISaAC is shown in figure 11. The +5V relay is mounted to the bottom of the board. In

addition the GPIO mating connector for the Raspberry PI is on the bottom of the board. This facilitates

connecting to the top of the Raspberry PI. In addition there is a mounting screw, space and nut for

connecting the ISaAC mounting hole aligned with the Raspberry PI mounting hole. Male headers can be

used top of board for the Arduino and GPIO connection accessible. The DAC has two small header pin on

top side of board labeled ‘output’ and ‘DAC’. The ‘output’ is already buffered output from the DAC. The

‘DAC’ is not buffered but allows the user to provide his own amplifier buffer, if that is deemed

necessary. The ISaAC is configured on power up to turn on the +5V relay automatically. This can be

optionally used to supply power to the Raspberry PI if the header jumper for PI power is selected on the

top of the board. The ISaAC receives its power form the USB. Make sure a +5V @ 1 amp regulated wall

transformer is feeding the ISaAC so it in turn can supply power to the Raspberry PI.

Figure 11; ISaAC Schematic

ISaAC Pin Table Designation

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

29
All Rights Reserved –Copyright 2013 KibaCorp Inc.

The ISaAC follows the ARDUINO pin format designation where D0 to D13 and A0

to A5 are identified with unique integers. Not all ARDUINO pins are available in

this initial ISaAC release, five of them (D3, D4, D5, D6, D7) are special functions

reserved for Raspberry Pi / ISaAC board communication and control.D3 and D&

are used for relay control driver, D4 and D5 are used with the RTCC XTAL, D6 is

used with PI serial communications. See chart below for all ISaAC pins; special

function pins indicated in bold.

Designator

(pin)

ARDUINO PIC32

pin

PIC32MX250F128B

D0 (0) RXD/PD0 22 RBP11\UART2RX

D1 (1) TXD/PD1 21 RBP10\UART2TX

D2 (2) INT0/PD2 16 INT0\RPB7

D3(3) INT1/PD3 17 RPB8-Relay Control

D4 (4) T0/PD4 12 T1CLK\RPA4

D5 (5) T1/PD5 11 T2CLK\RPB4

D6 (6) AIN0/PD6 9 RPA2 U1RX (rs232 to

PI TX)

D7 (7) AIN1/PD7 15 RPB6 –relay control

Internal to 2 U1TX (rs232 to PI RX)

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

30
All Rights Reserved –Copyright 2013 KibaCorp Inc.

board

A0 (14) ADC0/PC0 23 AN0\RA0

(AN12\RB12)

A1 (15) ADC1/PC1 3 AN1\RA1

A2 (16) ADC2/PC2 4 AN2\RB0\PGED1

A3 (17) ADC3/PC3 5 AN3\RB1\PGEC1

A4 (18) ADC4/SDA/

PC4

6 AN4\SDA2\RB2

A5 (19) ADC5/SCL/

PC5

7 AN5\SCL2\RRB3

D8 (8) ICP/PB0 10 IC2\RPA3

D9 (9) OC1A/PB1 26 OC1\RB15

D10 (10) OC1B/SS/P

B2

18 OC3\RB9

D11 (11) MOSI/OC2/

PB3

24 SDO1\OC4\RBP13

D12 (12) MISO/PB4 14 SDI1\RPB5

D13 (13) SCK/PB5 25 SCK1\RB14

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

31
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Appendix C Installation of TeraTerm and USB drivers

Installing Tera Term
 Down load the Tera Term application. It is open source and available for free from a number of

internet sites. You can find Tera Term at this URL

http://logmett.com/index.php?/download/tera-term-480-freeware.html

When you first connect the USB-to-UART S27 ACRONAME interface via USB, Windows will

prompt you for a driver. Navigate to the ARCONAME supplied drivers that are supplied with the

product and download these to your computer. You can find drivers at this URL, or let Windows

install automatically.

Once installed it will essentially represent a new COM. Use this new com port and then use the

serial port configuration to configure Tera Term for 192008N1 with no hardware handshake.

http://logmett.com/index.php?/download/tera-term-480-freeware.html

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

32
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 18: Tera Term Port selection

THE ISAAC TECHNICAL

REFERENCE MANUAL VERSION

1.0

33
All Rights Reserved –Copyright 2013 KibaCorp Inc.

Figure 19: Tera Term Serial Port Setup

