
PICBASIC PRO™ Compiler

REFERENCE MANUAL
Revised March 6, 2013

Copyright 2013
microEngineering Labs, Inc

www.melabs.com

Please report errors and inaccuracies to support@melabs.com.

Thank you for using PICBASIC PRO Compiler. The goal of this document is to
provide accurate and exhaustive information about the workings of the software
and how it might be used. As development continues in the software, so shall this
manual receive frequent revision. The latest manual release is available for
download at http://PBP3.com.

Legal stuff:

microEngineering labs, inc. (the company) disclaims all warranties, express or
implied, including without limitation the implied warranty of fitness for a particular
purpose, the implied warranty of merchantability, and the implied warranty of the
accuracy of the information presented in this document. In no event shall the
company or its employees, agents, suppliers or contractors be liable for any
incidental, indirect, special or consequential damages arising out of or in connection
with the use of the products described herein, including without limitation, lost
profits, downtime, goodwill, damage to or replacement of equipment or property, or
any costs for recovering, reprogramming or reproducing any data used with the
products.

PIC, PICmicro, dsPIC, and MPLAB are registered trademarks of Microchip Technology Inc. in
the USA and other countries. MPASM, PICkit, PICBASIC, PICBASIC PRO, PICPROTO, and
EPIC are trademarks of Microchip Technology Inc. in the USA and other countries. BASIC
Stamp is a trademark of Parallax, Inc.

http://pbp3.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Table of Contents

4 www.melabs.com 2013-03-06

Table of Contents

Chapter 1: Vital Information ... 11
1.1 System Overview .. 12
1.2 Integrated Development Environment (IDE) ... 14

1.2.1 MPLAB ... 14
1.2.2 MicroCode Studio .. 14
1.2.3 Other IDEs ... 14

1.3 Compile Modes PBPW and PBPL .. 15
1.4 Microchip Datasheets ... 16
1.5 Microchip Nomenclature ... 17
1.6 Manual Conventions and Notes .. 18

1.6.1 Command Prototypes .. 18
1.6.2 Special Terminology and Acronyms ... 19
1.6.3 Number formats ... 19
1.6.4 Comments in code examples ... 19

1.7 Technical Support ... 20
1.7.1 Support Requirements ... 20

Chapter 2: PBP Syntax and Programming .. 21
2.1 Program Organization (Example) ... 22
2.2 I/O Pins ... 23

2.2.1 Data Direction .. 23
2.2.2 Aliasing .. 23
2.2.3 Use in High-Level Commands ... 24
2.2.4 Additional Configuration ... 24
2.2.5 Pin Characteristics ... 25

2.3 DEFINEs ... 26
2.3.1 DEFINE OSC ... 26
2.3.2 Global DEFINEs ... 27
2.3.3 DEFINEs defined ... 27

2.4 Aliases .. 29
2.5 Labels ... 31
2.6 Variables ... 32

2.6.1 Creating Scalar Variables .. 32
2.6.2 Creating Array Variables .. 34
2.6.3 Using Scalar Variables ... 34
2.6.4 Using Array Variables .. 37

2.7 Constants ... 39
2.8 Modifiers ... 40

2.8.1 Modifiers used when creating variables 40
2.8.2 Modifiers that access binary subsets of numeric values 40
2.8.3 Modifiers for parsing and formatting ASCII strings 40

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Table of Contents

2013-03-06 www.melabs.com 5

2.8.4 Modifiers for specifying variable types in data space 41
2.9 ASCII and Strings .. 42
2.10 Input Modifiers for Parsing Strings ... 44

2.10.1 DEC .. 44
2.10.2 BIN .. 45
2.10.3 HEX .. 46
2.10.4 SKIP .. 47
2.10.5 STR ... 47
2.10.6 WAIT ... 48
2.10.7 WAITSTR .. 49

2.11 Output Modifiers for Formatting Strings ... 51
2.11.1 DEC .. 51
2.11.2 BIN .. 53
2.11.3 HEX .. 54
2.11.4 REP .. 56
2.11.5 STR ... 56

2.12 Numbers .. 58
2.13 Registers ... 59
2.14 Comments ... 60
2.15 Case Sensitivity ... 61

2.15.1 DEFINEs ... 61
2.15.2 Variables ... 61

2.16 White Space .. 62
2.16.1 Tabbing For Readability .. 63

2.17 Line-Extension (_) ... 64
2.18 Line-Concatenation (:) ... 65
2.19 INCLUDE ... 66

Chapter 3: Operators .. 67
3.1 Math Operators .. 71

3.1.1 Multiplication ... 71
3.1.2 '*/' and '**' Special Multiplication ... 72
3.1.3 Division ... 73
3.1.4 Remainder (Modulus) ... 73
3.1.5 ABS ... 74
3.1.6 ATN ... 74
3.1.7 COS .. 74
3.1.8 DCD .. 74
3.1.9 DIG ... 74
3.1.10 DIV32 .. 75
3.1.11 HYP .. 76
3.1.12 MAX and MIN ... 76
3.1.13 NCD .. 77

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Table of Contents

6 www.melabs.com 2013-03-06

3.1.14 REV.. 77
3.1.15 SIN ... 77
3.1.16 SQR ... 77

3.2 Bitwise Operators ... 78
3.2.1 & Bitwise AND ... 79
3.2.2 | Bitwise OR .. 79
3.2.3 ^ Bitwise EXCLUSIVE OR (XOR) ... 79
3.2.4 ~ Bitwise NOT (INVERT) .. 80
3.2.5 &/ Bitwise NOT AND (NAND) .. 80
3.2.6 |/ Bitwise NOT OR (NOR) ... 81
3.2.7 ^/ Bitwise NOT EXCLUSIVE OR (XNOR) 81
3.2.8 << SHIFT LEFT ... 82
3.2.9 >> SHIFT RIGHT .. 83

3.3 Comparison Operators ... 84
3.3.1 Signed vs. Unsigned Comparisons .. 84
3.3.2 Equal To (= or ==) .. 85
3.3.3 Not Equal To (<> or !=) .. 85
3.3.4 Less Than (<) ... 85
3.3.5 Greater Than (>) .. 85
3.3.6 Less Than or Equal To (<=) ... 86
3.3.7 Greater Than or Equal To (=>) ... 86

3.4 Logical Operators ... 87
3.4.1 Using Parentheses ... 87
3.4.2 Logical vs. Bitwise .. 87
3.4.3 AND ... 88
3.4.4 OR ... 88
3.4.5 XOR ... 88
3.4.6 NOT ... 89
3.4.7 ANDNOT .. 89
3.4.8 ORNOT .. 89
3.4.9 XORNOT .. 89

Chapter 4: Directives ... 90
4.1 DISABLE .. 92
4.2 DISABLE DEBUG ... 93
4.3 DISABLE INTERRUPT ... 94
4.4 ENABLE ... 95
4.5 ENABLE DEBUG .. 96
4.6 ENABLE INTERRUPT .. 97
4.7 ON DEBUG... 98
4.8 ON INTERRUPT ... 99
4.9 #CONFIG...#ENDCONFIG ... 100
4.10 #DEFINE .. 102

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Table of Contents

2013-03-06 www.melabs.com 7

4.11 #ERROR.. 104
4.12 #IF…#ELSE…#ENDIF .. 105
4.13 #IFDEF…#ELSE…#ENDIF ... 107
4.14 #IFNDEF…#ELSE…#ENDIF ... 108
4.15 #MSG .. 109
4.16 #WARNING ... 110

Chapter 5: Commands ... 111
5.1 Overview of Commands .. 112
5.2 @ ... 115
5.3 ADCIN ... 116
5.4 ARRAYREAD .. 118
5.5 ARRAYWRITE ... 119
5.6 ASM..ENDASM ... 120
5.7 BRANCH ... 121
5.8 BRANCHL ... 122
5.9 BUTTON .. 123
5.10 CALL ... 126
5.11 CLEAR... 127
5.12 CLEARWDT .. 128
5.13 COUNT .. 129
5.14 DATA ... 130
5.15 DEBUG .. 131
5.16 DEBUGIN .. 133
5.17 DO..LOOP ... 136
5.18 DTMFOUT ... 138
5.19 EEPROM ... 139
5.20 END ... 140
5.21 ERASECODE .. 141
5.22 EXIT .. 142
5.23 FOR..NEXT ... 143
5.24 FREQOUT ... 144
5.25 GOSUB.. 145
5.26 GOTO .. 146
5.27 HIGH ... 147
5.28 HPWM ... 148
5.29 HSERIN ... 150
5.30 HSERIN2 ... 153
5.31 HSEROUT ... 154
5.32 HSEROUT2 ... 156
5.33 I2CREAD ... 157
5.34 I2CWRITE ... 161
5.35 IF..THEN.. 164

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Table of Contents

8 www.melabs.com 2013-03-06

5.36 INPUT ... 166
5.37 LCDIN ... 167
5.38 LCDOUT ... 168
5.39 {LET} ... 174
5.40 LOOKDOWN .. 175
5.41 LOOKDOWN2 .. 176
5.42 LOOKUP ... 177
5.43 LOOKUP2 ... 178
5.44 LOW ... 179
5.45 NAP .. 180
5.46 ON GOSUB .. 182
5.47 ON GOTO ... 183
5.48 OUTPUT ... 184
5.49 OWIN .. 185
5.50 OWOUT .. 186
5.51 PAUSE ... 187
5.52 PAUSEUS... 188
5.53 PEEK .. 189
5.54 PEEKCODE .. 190
5.55 POKE .. 191
5.56 POKECODE ... 192
5.57 POT .. 193
5.58 PULSIN ... 195
5.59 PULSOUT ... 196
5.60 PWM ... 197
5.61 RANDOM .. 198
5.62 RCTIME .. 199
5.63 READ .. 200
5.64 READCODE ... 201
5.65 REPEAT..UNTIL ... 202
5.66 RESUME .. 203
5.67 RETURN ... 204
5.68 REVERSE... 205
5.69 SELECT CASE ... 206
5.70 SERIN ... 207
5.71 SERIN2 ... 209
5.72 SEROUT ... 213
5.73 SEROUT2 ... 215
5.74 SHIFTIN .. 219
5.75 SHIFTOUT .. 222
5.76 SLEEP .. 224
5.77 SOUND ... 225

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Table of Contents

2013-03-06 www.melabs.com 9

5.78 STOP ... 226
5.79 SWAP .. 227
5.80 TOGGLE.. 228
5.81 USBIN.. 229
5.82 USBINIT .. 230
5.83 USBOUT.. 231
5.84 USBSERVICE ... 232
5.85 WHILE..WEND .. 233
5.86 WRITE ... 234
5.87 WRITECODE ... 235
5.88 XIN .. 237
5.89 XOUT... 239

Chapter 6: Interrupts ... 242
6.1 Interrupts Using ON INTERRUPT ... 244

6.1.1 In Practice ... 244
6.1.2 How ON INTERRUPT Works .. 246

6.2 Interrupts Using Assembly Language .. 248
6.2.1 Checklist ... 248
6.2.2 DEFINEs ... 249
6.2.3 Enabling Interrupts .. 249
6.2.4 Placement of the Assembly Language Routine 249
6.2.5 Declaring Special Variables to Save Context 250
6.2.6 Access to PBP Variables from the Interrupt Handler 250
6.2.7 Time-Sensitive PBP Commands ... 251

6.3 Assembly Interrupts for PIC18 Devices ... 252
6.3.1 Interrupt Priorities.. 252
6.3.2 Saving and Restoring Context .. 253
6.3.3 Example High/Low Priority ISR Framework for PIC18 255

6.4 Assembly Interrupts for Enhanced 14-Bit Instruction Set 256
6.4.1 Saving and Restoring Context .. 256
6.4.2 Example ISR Framework for Enhanced 14-Bit 256

6.5 Assembly Interrupts for 14-Bit Instruction Set 257
6.5.1 Declaring Special Variables to Save Context 257
6.5.2 Saving and Restoring Context .. 259
6.5.3 Example ISR Framework for the 14-Bit Instruction Set: 261

Chapter 7: Advanced Techniques and Concepts ... 262
7.1 In-Line Assembly Language .. 263

7.1.1 Inserting Assembly Code .. 263
7.1.2 Placement of In-line Assembly .. 264

7.2 Code Pages and RAM Banks .. 266
7.3 RAM Allocation .. 268

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Table of Contents

10 www.melabs.com 2013-03-06

7.4 MPLAB® Development Environment .. 270
7.4.1 Debugging Tool General Considerations 270
7.4.2 Debugging Tool Device-Specific Considerations 270

7.5 Hardware Stack .. 273
7.6 Array Handling Mechanism ... 275

7.6.1 The Danger .. 275
7.6.2 Brackets Perform Offsets ... 276
7.6.3 Sub-Arrays within Arrays .. 277
7.6.4 Accessing Arrays as Multiple Variable-Types 277
7.6.5 Applying Offsets to Bits within a Variable or Register 279

Chapter 8: Appendixes .. 280
8.1 Debugging and Troubleshooting ... 281

8.1.1 Configuration .. 281
8.1.2 Initializing values .. 281
8.1.3 DEFINE OSC ... 281
8.1.4 Analog Inputs ... 282
8.1.5 Internal Oscillator ... 282
8.1.6 Read-Modify-Write ... 283
8.1.7 Data Direction .. 284
8.1.8 Analog Conversion ... 285
8.1.9 I/O pin parameters and limitations ... 286
8.1.10 Piggybacked pin functions ... 286
8.1.11 Pin Relocation and Defines .. 286
8.1.12 Omitting parentheses ... 287
8.1.13 Channel numbers vs. pins .. 287
8.1.14 Hardware Stack ... 288
8.1.15 Overrunning Array Variables .. 288

8.2 12-Bit Instruction Set Considerations .. 289
8.3 PBPX Command Line Operation .. 290
8.4 Specifying Assembler Location with PBP_MPASM 294
8.5 defs Include Files .. 295

8.5.1 modedefs.bas .. 295
8.5.2 bs1defs.bas .. 295
8.5.3 bs2defs.bas .. 295

8.6 SERIN2/SEROUT2 Mode List .. 296
8.7 Defines ... 298
8.8 Reserved Words ... 301
8.9 ASCII Conversion Chart ... 305
8.10 Glossary ... 307
8.11 Index ... 312

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

2013-03-06 www.melabs.com 11

Chapter 1: Vital Information

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

12 www.melabs.com 2013-03-06

1.1 System Overview
PICBASIC PRO Compiler (PBP) is intended to be used within a system comprised
of several tools. Below is a brief list of commonly used components, listed in the
order in which you are likely to encounter them.

Your PBP installation typically includes PICBASIC PRO Compiler, Mecanique's
MicroCode Studio IDE, Microchip's MPLAB IDE, and Microchip's MPASM
assembler.

If you obtained PBP as a reduced-filesize download, the installation does not
include MPLAB and MPASM, but the installation process will offer you the chance
to download and install MPLAB. MPLAB includes MPASM. The latest version of
MPLAB can always be downloaded from Microchip's website (www.microchip.com)

Integrated Development Environment (IDE)

The IDE is the user-interface, in which you create and edit your program. A good
IDE will also manage the following tools, invoking them when needed. Examples of
IDEs include MicroCode Studio from Mecanique and MPLAB® from Microchip.

Compiler

The compiler is the tool that converts your BASIC program into Assembly
Language. PBP is a compiler. PBP depends on an IDE for user interface, and an
assembler to finish the conversion to machine-language.

Assembler

The assembler is the tool that converts the Assembly Language into machine
language. The assembler runs after the compiler, and is normally invoked
automatically. PBP is designed to use Microchip's MPASM assembler, which is
included with MPLAB.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

2013-03-06 www.melabs.com 13

Device Programmer

The device programmer takes the machine language code and "burns" it into the
microcontroller. Examples of device programmers are the U2 Programmer from
melabs and the PICkit™ 3 from Microchip. The melabs U2 Programmer is
recommended for ease of use and availability of technical support.

Debugger

A debugger is used to "see" what is happening inside the microcontroller when it
runs. The simplest method of debugging is to write bits of code into your program
that display information like variable and register values. The term In-Circuit
Debugger (ICD) refers to a device or method that gives you step-by-step control of
program execution via a connection to the microcontroller. Examples of debuggers
are the ICD3 from Microchip and the software-based ICD system offered in
MicroCode Studio PLUS from Mecanique.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

14 www.melabs.com 2013-03-06

1.2 Integrated Development Environment (IDE)
PBP is designed to operate within an Integrated Development Environment (IDE).
This means that, by itself, PBP is only a utility that accepts files as inputs and
generates files as outputs. The IDE is what provides the user interface and
program-editing capability.

1.2.1 MPLAB

Microchip (www.microchip.com) offers a free IDE called MPLAB. It is included on
the PBP installation CD. In order to use MPLAB, PBP must be first installed as a
language tool within that environment. A utility can be run from the PBP program
group on the Start menu that will accomplish the installation and setup.

MPLAB should be installed even if you are using a different IDE. The MPLAB
installation includes the Microchip assembler, MPASM, which is needed for
operation of PBP.

1.2.2 MicroCode Studio

MicroCode Studio is a purpose-built IDE offered by Mecanique
(www.mecanique.co.uk). MicroCode Studio is included on the PBP installation CD.
It is a favorite among PBP users for its ease of use.

Mecanique offers an advanced version (MicroCode Studio Plus) that adds features
for in-circuit debugging and bootloader programming.

1.2.3 Other IDEs

Any text editor can be used to create programs for PBP, though it is best to use one
that is designed with compiler-management capability. Even better is an IDE that is
PBP-aware and will highlight PBP syntax with color and text formatting.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

2013-03-06 www.melabs.com 15

1.3 Compile Modes PBPW and PBPL
Throughout this manual, you will find references to "PBPW" and "PBPL". These
represent compilation modes that control the maximum size variable type in PBP.
WORD variables are 16-bits wide and can hold values 0 to 65535. LONG variables
are 32-bits wide and can hold values -2147483648 to 2147483647.

PBPW refers to "PBP in WORD-mode". In this mode, LONG variables are not
available to PBP or to the user. When generating temp variables in the
background, PBP will use WORDs to save resources and improve execution
speed. This mode is available to all target devices.

PBPL refers to "PBP in LONG-mode". In this mode, LONG variables are made
available. This mode is only available when compiling for a target device with the
"PIC18" prefix. LONG variables are interpreted as two's-complement, signed
values in PBP, whereas other variable types are not. This affects the results of
some math and comparison operators.

The mode-selection should be available in the compile or project options within the
Integrated Development Environment (IDE) that you have chosen. If you are
accessing the executable directly or setting up an IDE that requires command-line
information to access the executable, the command-line switch –n invokes PBP in
LONG mode.

For more information see:

2.6: Variables
3.1: Math Operators
3.3.1: Signed vs. Unsigned Comparisons
8.3: PBPX Command Line Operation

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

16 www.melabs.com 2013-03-06

1.4 Microchip Datasheets
At the time of this writing, PBP supports more than 500 microcontrollers. Each of
these devices has its own set of internal registers that perform specific functions.
The names and construction of these registers differ between device families.
Some family's internal workings are incredibly powerful and complex. Microchip
provides a datasheet for each family that details how things work.

In order to use PBP, you must become familiar with the datasheet for the device
you have chosen to use. It isn't necessary to read a datasheet from cover to cover,
but the datasheet will provide the reference documentation that is needed to
manage the device with PBP.

PBP is a full-fledged, professional-level compiler for embedded development. It is
also a tool with a reputation for ease-of-use, suitable to the hobbyist. If you are
moving to PBP from a "microcontroller-like" device that didn't require you to use
datasheets, then you have stepped up considerably. We congratulate you and we'll
do everything possible to help you make the transition.

Datasheets can be found at www.microchip.com. A search of the website using
the device part number should turn up the datasheet quickly.

If you need help understanding the datasheet, contact melabs support.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

2013-03-06 www.melabs.com 17

1.5 Microchip Nomenclature
This manual may refer to device families by prefix or instruction set, but one should
not assume that prefix always denotes instruction set. The prefixes "PIC12" and
"PIC16" include parts from multiple instruction sets:

PIC10 (prefix) small, inexpensive devices that
use the 12-bit or 14-bit
instruction sets

PIC12 (prefix) 8-pin devices that may use the
12-bit, 14-bit, or enhanced 14-
bit instruction sets

PIC16 (prefix) devices ranging from 14-pin to
64-pin that may use the 12-bit,
14-bit, or enhanced 14-bit
instruction sets

PIC18 (prefix) high-performance devices that use
the 16-bit instruction set

12-bit instruction set
(denoted as "Baseline
Architecture" by Microchip)

mostly attractive for low cost,
these devices may not be
compatible with all PBP commands,
PBP LONG variables not available

14-bit instruction set
(denoted as "Mid-Range
Architecture" by Microchip)

compatible with all PBP commands,
PBP LONG variables not available

Enhanced 14-bit instruction set
(denoted as "Enhanced Mid-Range
Architecture" by Microchip)

compatible with all PBP commands,
some features in common with 16-
bit instruction set, PBP LONG
variables not available

16-bit instruction set
(denoted as "PIC18 Architecture"
by Microchip)

All devices with prefix PIC18,
compatible with all PBP commands,
PBP LONG variables supported,
high-speed and generally better
performance than the other
families supported by PBP

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

18 www.melabs.com 2013-03-06

1.6 Manual Conventions and Notes

1.6.1 Command Prototypes

Each command will be illustrated with a prototype that shows the required and
optional parameters that may be used. The key to reading the prototypes is that
anything enclosed in braces ({}, curly brackets) is optional when writing the
command. For example:

HSERIN {ParityLabel,}{Timeout, Label,}[Item{,...}]

This prototype indicates that for the HSERIN command:

{ParityLabel,} A ParityLabel may be optionally inserted followed by
a comma.

{Timeout, Label,} A Timeout value and label may be inserted with
commas, and that Timeout and Label must be used
together.

[a square bracket must be used to begin the item list
Item at least one Item must be inserted
{,…} multiple Items may be listed and separated by

commas
] a square bracket must close the item list

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

2013-03-06 www.melabs.com 19

1.6.2 Special Terminology and Acronyms

Some acronyms and terms that will be used extensively in this manual are:

PBP PICBASIC PRO™ Compiler
PBPW PBP in WORD mode
PBPL PBP in LONG mode
melabs microEngineering Labs, Inc.

1.6.3 Number formats

Numbers in this manual may be written as decimal (99), hexadecimal ($63) or
binary (%1100011). The choice of number format will depend on the context. The
intent is to improve readability by expressing numbers in formats that match the
application of the value. (see section 2.12 for more information on PBP number
formats and handling)

1.6.4 Comments in code examples

For the sake of readability, comments in code examples will begin with a comment
character, but may wrap to multiple lines without comment characters on
subsequent lines. To compile many of these examples, comment characters would
have to be added. For example:

WRITE 5,B0 ' Send value in B0 to EEPROM
location 5

The comment begins with an apostrophe, but wraps to a second line that would
result in a compile error if typed literally into your program. To avoid the error, the
example would be written like this:

WRITE 5,B0 ' Send value in B0 to EEPROM
 ' location 5

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Vital Information

20 www.melabs.com 2013-03-06

1.7 Technical Support
microEngineering Labs takes great pride in providing the best technical support
possible. Depending on the PBP edition that you have purchased, tech support is
available in different forms.

Online Forum Available for all users
Direct Email Available for licensed users of premium editions
Telephone Available for licensed users of premium editions

See the Support section of our website (www.melabs.com) for contact details.

1.7.1 Support Requirements

The support we provide can only be as detailed as the information that you provide
to us. Please have the following information ready when requesting support.

• PBP version number.
• Complete, exact error message, if an error has been encountered. (An

exact error message will usually result in an immediate solution.)
• The exact part number of the device you are compiling for.
• Complete details about your operating system, including Windows version,

your access privilege level, and whether a virtual machine is in use.
• The method that you are using for test/debug. (Hardware platform, ICD

device, running in simulation on PC, etc.)

Please note that reading program code verbally over a telephone connection is our
least favorite way of providing support. It just doesn't work. We understand that
some users prefer the immediate response of a phone call, but this shouldn't
preclude an email with a file attachment. Send us an email, then dial.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 21

Chapter 2: PBP Syntax and Programming

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

22 www.melabs.com 2013-03-06

2.1 Program Organization (Example)
Here is a brief example program intended for a PIC16F887. Most PBP programs
may be organized as shown in this example.

' DEVICE CONFIGURATION: See section 4.9
#CONFIG
 __CONFIG _CONFIG1, _HS_OSC & _LVP_OFF & _CP_OFF
 ;Set HS osc, Low-Voltage Programming disabled,
 ;Code-Protection disabled
#ENDCONFIG

' DEFINEs: See section 2.2 for more information.
DEFINE OSC 20 ' Tell PBP the expected system-

clock frequency

' ALIASES: See section 2.4 for more information.
LEDS Var PORTD ' Alias PORTD to LEDS

' VARIABLES: See section 2.6 for more information.
i Var Byte ' Define loop variable

' INITIALIZE REGISTERS: See section 2.13 for info.
init:
 ANSEL = %00000000 ' Make AN0-AN7 digital
 ANSELH= %00000000 ' Make AN8-AN13 digital
 TRISD = %00000000 ' Set PORTD to all output

' PROGRAM CODE
mainloop:
 LEDS = %00000001 ' First LED on
 Pause 500 ' Delay for .5 seconds
 For i = 1 To 7 ' Go through For..Next loop 7

times
 LEDS = LEDS << 1 ' Shift on LED one to left
 Pause 500 ' Delay for .5 seconds
 Next i
Goto mainloop ' Go back to mainloop

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 23

2.2 I/O Pins
The input/output pins on a PIC microcontroller are accessed as bits within a port
register (SFR). Port registers may be named PORTx (x being the port letter) or
GPIO. The fundamental method for accessing pins is via Direct-Register-Access
using the port register name and bit number:

PORTB.2 = 1 ' Set PORTB, bit-2 high
x = PORTC.0 ' Read PORTC bit-0 into var x

2.2.1 Data Direction

Most pins on the microcontroller can be configured as input or output. In most
cases, they will default to input. To specify the data-direction (input or output), a
register is provided in which each bit controls the data-direction of a corresponding
I/O pin. These data-direction registers are usually named TRISx (x being the port
letter). Smaller devices may use the name TRISIO. In most cases, setting a data-
direction bit to 0 results in an output pin, setting to 1 results in an input pin. You
should always consult the datasheet for the specific device to be sure.

To expand the example above, each of the pins needs to be configured
appropriately as input or output.

TRISB.2 = 0 ' Set PORTB.2 to output
TRISC.0 = 1 ' Set PORTC.0 to input

PORTB.2 = 1 ' Set PORTB, bit-2 high
x = PORTC.0 ' Read PORTC bit-0 into var x

Another commonly-used method is to set the data-direction registers with 8-bit
values instead of setting each pin individually:

TRISB = %11111011 ' PORTB.2 output, the rest of
PORTB is input

TRISC = %11111111 ' All pins on PORTC are inputs

2.2.2 Aliasing

The above examples demonstrate the low-level method for setting data-direction,
but hard-coding the actual PORT.BIT names into the program code will make it
difficult to reassign pins at a later date. The accepted method of PBP programming
is to assign friendly, meaningful names to the pins and use the assigned names in

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

24 www.melabs.com 2013-03-06

the program code. These names are known as aliases. See section 2.4 Aliases
for more information.

2.2.3 Use in High-Level Commands

The data-direction is set automatically for most of the PBP high-level commands. If
the command sends output, the pin is set for output. If the command reads the
digital state of the pin, the pin will be set to input. PBP does not set the data-
direction back to its original state after such commands are executed.

Either the PORT.PIN designations or the aliases you have assigned may be used
directly in PBP commands. For instance, there is no need to read a pin value to a
variable before testing it. You can test an input pin directly with:

IF switch = 0 THEN ' Check state of switch pin
 HIGH led1 ' LED on
 PAUSE 500 ' Delay 500mS
 LOW led1 ' LED off
ENDIF
I2CREAD PORTB.5, PORTB.4, $A0, location,[B_val]

Note the use of the HIGH and LOW commands in the preceding example. These
are considered high-level commands because they do more than just set the bit in
the PORTx register. They also set the data-direction to output.

2.2.4 Additional Configuration

Setting data-direction does not otherwise configure the pin for analog or digital
operation. If analog inputs are to be used, or if an analog input needs to be
configured for digital operation, this must be done manually by setting the
appropriate registers. See section 8.1.4 Analog Inputs for more information.

Most pins will have several functions that can be enabled/disabled with register
settings. Watch out for functions that are enabled by default and that will interfere
with digital operation. The analog conversion inputs mentioned above are a good
example of this. It is common to have to disable analog functions on pins in order
to use them for digital I/O.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 25

2.2.5 Pin Characteristics

Microchip provides several types of I/O pins on most devices. You should consult
the datasheet when in the design stage to make sure that you choose appropriate
pins. Here are some clues:

• Most pins will source 20-25mA of current, but not all. Some, especially on
high pin-count devices, will be limited to 2mA per pin.

• In most cases, the total current that a port can supply is limited. In other
words, the sum of the current supplied by all the pins on a single port has
a limit that supersedes the individual pin limits. In many cases, each pin is
limited to 25mA, but the sum of the eight pins on the port is limited to
125mA.

• There are several different types of input pins (Schmidt, CMOS, TTL, etc.)
that each have different threshold voltage characteristics.

• Some pins are designated input-only and cannot be used as outputs.
• Some pins may be "open-drain" output types, meaning that they can't

source current (drive voltage high). They can only sink current (drive
voltage low).

• If a pin is capable of functioning as an input for an analog converter or
comparator, it will usually be configured as an analog input by default.
These pins must be reconfigured in order to use them as digital I/O.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

26 www.melabs.com 2013-03-06

2.3 DEFINEs
The DEFINE keyword in PBP is used to set parameters for compilation and
assembly. This should not be confused with #DEFINE, which is used for
conditional compilation. Further explanation of DEFINE and how it works can be
found at the end of this section.

Only a few of the many DEFINE terms will be mentioned here. The rest are
associated with PBP commands and will be discussed on the appropriate
command pages.

2.3.1 DEFINE OSC

The most important DEFINE in PBP is:

DEFINE OSC 4 ' Oscillator speed in MHz:
3(3.58) 4 8 10 12 16 20 24 25 32
33 40 48 64

In this DEFINE, OSC is set to a number that represents the anticipated system
clock frequency in MHz. DEFINE OSC is used extensively by PBP to convert time
values to instruction cycles. Any time-critical operation like a pause or a generated
baud rate is completely dependent on DEFINE OSC.

Note that each PIC MCU has a specified maximum frequency of operation. The
higher frequencies that are available to PBP may not be useable on the device you
have chosen. Check the datasheet for the max frequency rating.

If DEFINE OSC is omitted, PBP assumes a default value of DEFINE OSC 4 and
calculates based on a 4MHz system clock.

There are a limited number of valid numbers that can be used: 3 (3.58MHz), 4, 8,
10, 12, 16, 20, 24, 25, 32, 33, 40, 48, 64. These are the only frequencies for which
PBP is able to accurately calibrate its timing. If you use a system clock that runs at
a frequency that isn't listed here, your timing will be scaled when the program
executes.

For example, let's assume that you have a good reason to use a 9MHz crystal to
clock your MCU. Using "DEFINE OSC 10" will result in your timing to be scaled on
the slow side, because the actual clock will run at 90% of the DEFINEd value. A
"PAUSE 10" will pause for 11.1mS. Your 9600 baud serial commands will run at
8640 baud.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 27

Note that "DEFINE OSC" doesn't set or change the actual clock frequency. It only
tells PBP what to expect. The actual frequency is set by selecting a crystal,
changing the device configuration, setting registers in your program, or (most
commonly) a combination of all of these.

2.3.2 Global DEFINEs

Other DEFINEs that are important, though less frequently used, are:

DEFINE NO_CLRWDT 1 'Don’t insert CLRWDTs
DEFINE LOADER_USED 1 'Bootloader is being used
DEFINE OSCCAL_1K 1 'Set OSCCAL for 1K PIC12
DEFINE OSCCAL_2K 1 'Set OSCCAL for 2K PIC12
DEFINE RESET_ORG 0h 'Change reset address for PIC18
DEFINE INTHAND Label 'Assign assembler interrupt

handler label
DEFINE INTLHAND Label 'Assign assembler low priority

interrupt handler label for
PIC18

See section 8.6 for a condensed list of DEFINEs with brief explanations.

2.3.3 DEFINEs defined

For the user familiar with Assembly Language, the major clue to understanding is
that DEFINEs in PBP are converted literally to Assembly Language #DEFINE
directives.

For the practical PBP user, there are a couple of fundamental points to consider:

1) DEFINEs are CASE SENSITIVE!
2) Specific DEFINEs are generally associated with PBP commands. The

command pages will describe how the relevant DEFINEs affect the
operation of each command.

DEFINEs are used by PBP to change the generated Assembly Language that
makes up the compiled program. A DEFINE might simply change an internal
register setting, or it might result in the use of an alternative Assembly Language
routine to accomplish a task.

A good example is in our serial communication commands SEROUT2 and DEBUG.
DEBUG uses a DEFINE to set the serial baud rate, while SEROUT2 accepts a
baud-rate parameter when the command is executed.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

28 www.melabs.com 2013-03-06

The difference is that "DEFINE DEBUG_BAUD 9600" actually causes PBP to find
and compile a DEBUG routine that only works at 9600 baud. The SEROUT2
routine is compiled with the capability of working at different baud rates, depending
on the parameters passed to it. Since DEBUG is compiled for a specific baud rate,
it can't be changed when the program is running. SEROUT2 will accept a variable
to set the baud rate on the fly.

Multiple DEFINEs for the same parameter will cause compile/assembly errors in
PBP.

It doesn't matter where you place DEFINEs in your code, but it is good practice to
keep them together at the top of the program.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 29

2.4 Aliases
Aliases are simply alternate names for variables, portions of variables, registers, or
bits within registers. Alias names are assigned using the VAR keyword.

Alias names should be limited to 31 alpha-numeric characters (letters and
numbers) in length. PBP will accept longer names, but all names will be truncated
to 31 characters during compilation. Names are not case-sensitive. Names cannot
begin with a number. The only special character allowed in names is the
underscore "_" character.

long_val VAR LONG 'Variable declarations
word_val VAR WORD
byte_val VAR BYTE[8]

'Examples of Aliases

time VAR long_val
speed VAR word_val
speed_low VAR word_val.BYTE0
second_byte VAR BYTE[1]
data_pin VAR PORTB.3

Aliases are important as a means to make global changes throughout your code, as
well as a method for making some names more meaningful. For example, let's take
the simple operation of blinking an LED that is connected to a pin:

mainloop:
HIGH PORTB.0
PAUSE 500
LOW PORTB.0
PAUSE 500

GOTO mainloop

The above example works, but when someone else reads the code, they will have
no idea what is connected to PORTB.0 until they consult the schematic. A more
readable method, with no penalty in resources used, is:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

30 www.melabs.com 2013-03-06

power_LED VAR PORTB.0 'Assign an Alias to PORTB.0

mainloop:

HIGH power_LED
PAUSE 500
LOW power_LED
PAUSE 500

GOTO mainloop

To further demonstrate the power of Aliases, consider what happens if you have to
use a different pin for the LED. You can change the first example by using search-
n-replace in your editor, but this could become problematic if the pin is specified in
other places in a large program. In the second example, you can simply change
the alias, and it will globally change every instance, throughout the program.

power_LED VAR PORTC.2 'Change the LED pin

Here is another example of a real world method where aliases are used to make
the code more easily portable:

led1 VAR PORTB.2 ' Name the LED pin
switch1 VAR PORTC.0 ' Name the Switch pin

OUTPUT led1 ' Make LED pin output
INPUT switch1 ' Make Switch pin input

The example above uses the convenient INPUT and OUTPUT commands to set
the data-direction. These commands will automatically find the associated data-
direction bit for each pin and set it appropriately, automatically adapting to changes
in the alias designation.

Note: The keyword SYMBOL can also be used to create Aliases, but this method is
not recommended. You may see it in older PBP programs that you find on the web.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 31

2.5 Labels
Labels are names used to mark a place in a program. Usually, labels are used in
conjunction with GOTO, GOSUB or similar commands that need a location to jump
to in a program. Labels don't use any resources on the MCU.

Label names should be limited to 31 alpha-numeric characters (letters and
numbers) in length. PBP will accept longer names, but all names will be truncated
to 31 characters during compilation. Names are not case-sensitive. Names cannot
begin with a number. The only special character allowed in names is the
underscore "_" character.

Labels should be denoted with a colon afterwards.

mainloop:
SEROUT 0,N2400,["Hello, World!",13,10]
PAUSE 500

GOTO mainloop

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

32 www.melabs.com 2013-03-06

2.6 Variables
Variables are where temporary data is stored in a PICBASIC PRO program. They
are created using the VAR keyword. Variables may be bit-, byte- and word-sized
for PBPW, and bit-, byte-, word- and long-sized for PBPL. Space for each variable
is automatically allocated in the microcontroller’s RAM by PBP.

Each variable type can be created as a scalar variable, which holds only one value,
or an array variable which can hold many values. Assume that any reference to
"variables" in this manual means scalar variables.

Variable names should be limited to 31 alpha-numeric characters (letters and
numbers) in length. PBP will accept longer names, but all names will be truncated
to 31 characters during compilation. Names are not case-sensitive. Names cannot
begin with a number. The only special character allowed in names is the
underscore "_" character.

2.6.1 Creating Scalar Variables

The format for creating a variable is as follows:

Variable_Name VAR Type {.Modifiers}

Variable_Name is any unique identifier (name), excluding reserved words.

Type is BIT, BYTE, WORD and, for PBPL, LONG.

Type # of bits Range

BIT 1 0 to 1
BYTE 8 0 to 255
WORD 16 0 to 65535
LONG * 32 -2147483648 to

2147483647
* PBPL Only

As the table shows, BIT, BYTE and WORD variables are always unsigned, i.e.
positive numbers. LONG variables, which are only available in PBPL, are always
signed, two's-complement numbers. They may hold positive or negative values.

PBPL interprets LONG variable types as signed numbers. WORDs, BYTEs, and of
course BITs are always interpreted as positive, unsigned integers when used in a
PBP math operation.

If the result of an operation could possibly be negative, it should be stored to a
long-sized variable type to preserve the sign. If a negative result is placed in a

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 33

variable type other than long, subsequent calculations using this value will interpret
it as a positive number.

hours VAR BYTE 'range 0 to 255

minutes VAR WORD 'range 0 to 65535

seconds VAR LONG '-2147483648 to 2147483647

Modifiers can be used to specify certain attributes of the variable when created:

address A numeric address may be used as a modifier. This
instructs PBP where to locate the variable in RAM.

BANKx Instructs PBP to locate the variable in a specific
bank of RAM.

SYSTEM The default behavior of PBP is to append a prefix
underscore character when creating the variable in
Assembly Language. The SYSTEM modifier inhibits
this behavior so that the variable name will be
identical in PBP code and Assembly code.

Note that the SYSTEM keyword also assigns priority to the variable when PBP is
allocating RAM locations. SYSTEM variables will be allocated before other
variables.

ticker VAR BYTE BANK0 SYSTEM
'Creates "ticker" as a BYTE in BANK0, with no Assembly
'prefix character

wsave VAR BYTE $70
'Creates "wsave" at RAM address 0x70 (hex)

A note about BIT variables:

When BIT variables are created, PBP must reserve full BYTEs of RAM and then
assign variable names to each bit within the BYTE containers. This is fine in most
cases, but you may wish to control this yourself. To create a bit variable and
control the BYTE it's assigned to, you can use aliasing to do it manually:

my_flags VAR BYTE 'Create a container for bits
flag0 VAR my_flags.0 'Assign an alias to bit-0
flag1 VAR my_flags.1 'Assign an alias to bit-1

This is exactly what PBP would do in the background, but it will assign its own
name to the "container" BYTE variable. It's useful to take control and assign this

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

34 www.melabs.com 2013-03-06

name manually, especially when debugging in an environment that won't show
individual bits in a watch window.

2.6.2 Creating Array Variables

Array variables are created using the same syntax as scalar variables, but the
number of elements in the array is enclosed in brackets and appended to the
variable-type keyword:

samples VAR BYTE[16]
'Create an array of 16 BYTE elements – samples[0] through
'samples[15]

All of the modifiers allowed for scalar variables can also be used for array variables:

samples VAR BYTE[16] BANK3 SYSTEM

Because of the way arrays are accessed and allocated in memory, there are size
limits for each type:

Size Maximum Number of elements

 PIC18 Devices Other Devices

BIT 256 256
BYTE limited only by

available RAM
96

WORD limited only by
available RAM

48

LONG limited only by
available RAM

LONGs not available

Arrays must fit entirely within one RAM-bank on 12-bit and 14-bit devices (PIC10,
PIC12, and PIC16). Arrays may span banks on PIC18 devices. On PIC18 devices,
BYTE, WORD and LONG-sized arrays are only limited in length by the amount of
available memory. The compiler will assure that arrays, as well as scalar variables,
will fit in memory before successfully compiling.

2.6.3 Using Scalar Variables

Using previously-created variables is straightforward. Simply write variable names
in commands or expressions.

Note that PBP is aware of a variable's type and will make decisions based on this.
The behavior of certain commands may change based on the type of variables that

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 35

are used. The underlying math routines will always be tailored to the variable types
used for input and result. In most cases, the use of BYTE variables will result in
faster-executing code.

B_val VAR BYTE 'Create a BYTE variable
location VAR WORD 'Create a WORD variable
B_val = PORTB 'Read PORTB into B_val
location = 0 'Set location to 0
I2CREAD DPin,CPin,$A0,location,[B_val]
'Read to B_val from a 24LC512 memory chip at location 0

In the example above, the variable-type assigned to "location" affects how the
I2CREAD command functions. If the memory was a 24LC01, a BYTE variable
would be required.

The smallest variable type in PBP is the BIT. BYTES are made up of BITs,
WORDs are made up of BYTES, and LONGs are made up of WORDS. Using
modifiers, you can access the smaller entities within a larger variable.

To access bit-7 in a byte variable, you may use "BIT7", or simply "7" after the
variable name, separated by a period:

B_val.7 = 1 'Set bit-7 in B_val to 1

To access byte-2 in a LONG variable, use the modifier "BYTE2":

long_val.BYTE2 = 255 'Set byte-2 to 255

The following are all legal in PBP:

long_val VAR LONG
word_val VAR WORD
byte_val VAR BYTE

long_val.WORD1 = 0
long_val.BYTE3 = 255
long_val.31 = 1
word_val.BYTE1 = 0
word_val.15 = 0
byte_val.7 = 0

When using a variable with a modifier, PBP will see the variable-type of the
modifier. This can save execution time. For example, you might want to fill a
WORD variable by combining the states of registers PORTC and PORTB. It's
perfectly valid to write:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

36 www.melabs.com 2013-03-06

word_val = (PORTC << 8) + PORTB

But the operation executes faster if you write:

word_val.BYTE1 = PORTC
word_val.BYTE0 = PORTB

The following table shows how modifiers refer to "nested" data objects:

Variable Modifiers

LONG

WORD1

BYTE3

BIT31 most-significant-bit (MSB)
BIT30

 BIT29

 BIT28

 BIT27

 BIT26

 BIT25

 BIT24

BYTE2

BIT23

 BIT22

 BIT21

 BIT20

 BIT19

 BIT18

 BIT17

 BIT16

WORD0

BYTE1*

BIT15

 BIT14

 BIT13

 BIT12

 BIT11

 BIT10

 BIT9

 BIT8

BYTE0*

BIT7

 BIT6

 BIT5

 BIT4

 BIT3

 BIT2

 BIT1

 BIT0 least-significant-bit (LSB)

* For legacy compatibility, LOWBYTE may be substituted for BYTE0 and HIGHBYTE for BYTE1.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 37

2.6.4 Using Array Variables

A single Array Variable can be visualized as a list of values. The variable name is
how you access the list, and a number –or index– is used to point to any single
value within the list.

The index value is enclosed in brackets and appended after the array variable's
name.

myarray[index] = 0

The index can be a literal number, a variable, or an expression.

For the following examples, an array named "stored" is used:

stored VAR WORD[8] 'Create an array named "stored"
with 8 elements.

Note that the 8 elements in our array are numbered 0 through 7. There is no
element-8. This is very important, because PBP doesn't place a limit at the end of
the array. If you write "stored[8]", PBP won't generate an error and you will be
accessing memory outside of the array. (The end of the array is stored[7] and there
is no stored[8].) This could have disastrous results and be very difficult to debug.

The elements of "stored" can be written individually:

stored[0] = 1260
stored[1] = 2500

Or, you might want to write values with a loop. You could read PORTB once per
second and save 8 readings:

FOR index = 0 TO 7 'Loop 8 times
stored[index] = PORTB 'Save value of PORTB
PAUSE 1000 'Wait a second

NEXT index 'Loop again

PBP offers commands ARRAYREAD and ARRAYWRITE that make it very easy to
store multiple values in an array:

ARRAYWRITE stored, [1260,2500,10000,0,0,100,200,400]

A multi-dimensional table of values can be emulated using multiple index variables
to construct an index expression. To treat our array as a table with 2 columns (x)
and 4 rows (y), we can write:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

38 www.melabs.com 2013-03-06

x = 1 'x points to second column
y = 2 'y points to third row
stored[(x * 4) + y] = 100 'Write value to location 1,2

In the example above, the x coordinate is multiplied by 4 because we imagine that
the array exists as multiple columns that are 4-rows deep. To move across
columns in the same row, the actual array index must be incremented by 4.

The following table represents the array in two dimensions. Each location within it
shows how the x,y formula results in the actual index value that is used to access
the single-dimensional array.

x,y = 0,0
(0 * 4) + 0 = 0

x,y = 1,0
(1 * 4) + 0 = 4

x,y = 0,1
(0 * 4) + 1 = 1

x,y = 1,1
(1 * 4) + 1 = 5

x,y = 0,2
(0 * 4) + 2 = 2

x,y = 1,2
(1 * 4) + 2 = 6

x,y = 0,3
(0 * 4) + 3 = 3

x,y = 1,3
(1 * 4) + 3 = 7

One more note about array variables. The modifiers associated with scalar
variables can't be used with array variables:

stored[1].BYTE0 = 0 'ERROR

Instead, a temp variable may be used to manipulate a single byte within the value:

temp_word = stored[1] 'copy the value to a temp
temp_word.BYTE0 = 0 'change the temp value
stored[1] = temp_word 'update the array value

Advanced techniques may be used to access arrays in many different ways. See
section 7.6 Array Handling Mechanism for more information.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 39

2.7 Constants
The CON keyword may be used to assign a meaningful name to a fixed value in a
program. This is useful when adjusting the value after the program is written, and
makes the program easier to read. Constants are simply substitutions made during
compile. They do not consume any memory on the microcontroller.

Constant names should be limited to 31 alpha-numeric characters (letters and
numbers) in length. PBP will accept longer names, but all names will be truncated
to 31 characters during compilation. Names are not case-sensitive. Names cannot
begin with a number. The only special character allowed in names is the
underscore "_" character.

adjustment CON 64396 'Create constant "adjustment"

result = (rate * time) ** adjustment
'Using the constant name is the same as using the number.

Constants are treated as 16-bit unsigned values when using PBPW. They are
treated as 32-bit signed values in PBPL. In all cases, however, you may use a
negative decimal value when creating a constant. The difference is in the
subsequent treatment of the value in the different versions of PBP.

preset CON -500 ' 65036 in PBPW, -500 in PBPL

In the above example, PBPW represents the constant with a 16-bit, two's-
complement value. Subsequent operations using the constant will see this as a
positive value.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

40 www.melabs.com 2013-03-06

2.8 Modifiers
Modifiers are keywords that, when placed in proximity to certain other entities in
PBP, can change behavior, perform conversions, or otherwise refine the operation
of the program.

Modifiers are discussed in detail in other parts of this manual. They are best
explored in conjunction with other commands and operators, because they aren't
stand-alone entities. This section is simply a list of modifiers with some clues about
where to find more information.

2.8.1 Modifiers used when creating variables

BANKA, BANK0-BANK15, SYSTEM

See section 2.6 Variables

2.8.2 Modifiers that access binary subsets of numeric values

BIT0-BIT31, BYTE0-BYTE3, WORD0-WORD1

See section 2.6.3 Using Scalar Variables

2.8.3 Modifiers for parsing and formatting ASCII strings

BIN, BIN1-BIN32, IBIN, IBIN1-IBIN32, SBIN, SBIN1-SBIN32, ISBIN, ISBIN1-
ISBIN32

HEX, HEX1-HEX8, IHEX, IHEX1-IHEX8, SHEX, SHEX1-SHEX8, ISHEX, ISHEX1-
ISHEX8

DEC, DEC1-DEC10, IDEC, IDEC1-IDEC10, SDEC, SDEC1-SDEC10, ISDEC,
ISDEC10-ISDEC10

REP, SKIP, STR, WAIT, WAITSTR

See 2.10 Input Modifiers for Parsing Strings and 2.11 Output Modifiers for
Formatting Strings

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 41

2.8.4 Modifiers for specifying variable types in data space

Modifiers that specify variable types when passing values to Data Space
(EEPROM): (See commands READ, WRITE, DATA, EEPROM)

WORD, LONG

See commands:

5.14 DATA
5.63 READ
5.86 WRITE

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

42 www.melabs.com 2013-03-06

2.9 ASCII and Strings
At some point it will be necessary to work with strings of text in your program. The
most common example is to output information on a display. Since PBP has no
STRING variable type, you must use special techniques to manipulate strings.

In most commands where strings are likely to be used, PBP will accept literal
strings in quotes and handle them appropriately.

HSEROUT ["Hello World"] 'send string "Hello World"

This works for serial communications commands, LCDOUT, ARRAYWRITE, and a
few more.

Array variables can be used to store strings and recall them. (See commands
ARRAYREAD and ARRAYWRITE)

PBP allows you to use a single ASCII character in quotes anyplace where a
numeric constant is accepted. The ASCII character will be converted to its numeric
equivalent at compile-time.

ASCII = digit + "0" 'same as ASCII = digit + 48

For commands that read strings as inputs, modifiers are available to parse the input
string and fill variables with numeric values. These modifiers are capable of
extracting data from input strings to various variable types:

Input Modifiers for Parsing Strings
Modifier Operation
DEC{1..10} Receive decimal digits
BIN{1..32} Receive binary digits
HEX{1..8} Receive upper case hexadecimal

digits
SKIP n Skip n received characters
STR ArrayVar\n{\c} Receive string of n characters

optionally ended in character c
WAIT () Wait for sequence of characters
WAITSTR ArrayVar{\n} Wait for character string

See section 2.10 for details on string-parsing modifiers.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 43

An assortment of string-formatting modifiers is available for use within the item list
of many commands that generate string output. These modifiers can be used to
format string output that includes numeric values converted from variables:

Output Modifiers for Formatting Strings
Modifier Operation
{I}{S}DEC{1..10} Send decimal digits
{I}{S}BIN{1..32} Send binary digits
{I}{S}HEX{1..8} Send hexadecimal digits
REP char\count Send character c repeated n

times
STR ArrayVar{\count} Send string of n characters

See section 2.11 for details on string-formatting modifiers.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

44 www.melabs.com 2013-03-06

2.10 Input Modifiers for Parsing Strings
The following information applies to output commands ARRAYREAD, DEBUGIN,
SERIN2, HSERIN, and HSERIN2. All of these commands accept an item list to
determine how received data is parsed and variables are filled. The modifiers
described in this section allow you to control this behavior.

Modifier overview:

Input Modifiers for Parsing Strings
Modifier Operation
DEC{1..10} Receive decimal digits
BIN{1..32} Receive binary digits
HEX{1..8} Receive upper case hexadecimal

digits
SKIP n Skip n received characters
STR ArrayVar\n{\c} Receive string of n characters

optionally ended in character c
WAIT () Wait for sequence of characters
WAITSTR ArrayVar{\n} Wait for character string

For the examples in this section, item lists will be denoted with square brackets,
even though some commands do not use brackets. Please use the enclosing
brackets only when appropriate for the command which you are using.

Examples in this section are taken from a program in which variable declarations
are:

testword VAR WORD ' Define word variable
testbyte VAR BYTE ' Define byte variable
test8 VAR BYTE[8] ' Define array variable with 8

locations

2.10.1 DEC

DEC{1..10}

Use DEC to convert an ASCII representation of a decimal number to a numeric
value. DEC will recognize characters "0" – "9", and "-".

If the leading character is the "-" (minus), DEC will convert the following number to
a two's-complement signed value.

DEC will wait for a recognized character to begin conversion, and automatically end
conversion when an unrecognized character is encountered.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 45

When written with a number (DEC2, DEC10, etc.), DEC will end the conversion
when the specified number of digits are collected.

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("Y"), DEC testword]

Waits for ASCII "Y", then looks for an ASCII string that could
represent a decimal number. It finds the string "-546", which
it converts to a signed integer and stores in testword.

input: "X-1011Y-547Z-F7ZZ-0001"
[WAIT("Y-"),DEC2 testword, testbyte]

In this example, we use the DEC2 modifier to collect the only 2
decimal digits after the wait-string "Y-" is received. This
results in the decimal value 54 being stored to testword. The
next character is "7", which is stored as ASCII in testbyte.
The testbyte value is decimal 55, which is the ASCII code for
"7".

2.10.2 BIN

BIN{1..32}

Use BIN to convert an ASCII representation of a binary number to a numeric value.
BIN will recognize characters "0", "1", and "-".

If the leading character is the "-" (minus), BIN will convert the following number to a
two's-complement signed value.

BIN will wait for a recognized character to begin conversion, and automatically end
conversion when an unrecognized character is encountered.

When written with a number (BIN2, BIN16, etc.), BIN will end the conversion when
the specified number of digits are collected.

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("X"), BIN testbyte]

Waits for ASCII "X", then looks for an ASCII string that could
represent a binary number. It finds the string "-1011", which
it converts to a signed integer. Value in testbyte is
%11110101, which is the two's-complement equivalent of %-1011.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

46 www.melabs.com 2013-03-06

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("ZZ-"), BIN testbyte]

Waits for ASCII string "ZZ-", then looks for a string that
could represent a binary number. It finds "0001", which it
converts to a signed integer. Value in testbyte is %00000001.

2.10.3 HEX

HEX{1..8}

Use HEX to convert an ASCII representation of a binary number to a numeric
value. HEX will recognize characters "0"-"9", "a"-"f", "A"-"F", and "-"

If the leading character is the "-" (minus), HEX will convert the following number to
a two's-complement signed value.

HEX will wait for a recognized character to begin conversion, and automatically end
conversion when an unrecognized character is encountered.

When written with a number (HEX2, HEX4, etc.), HEX will end the conversion when
the specified number of digits are collected.

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("X-"), HEX testbyte]

Waits for ASCII string "X-", then looks for a string that could
represent a hexadecimal number. It finds "1011" which it tries
to store in the testbyte variable. Since the value of $1011
is too large for a single byte, it only stores the least
significant 8 bits. Value in testbyte is $11 or %00010001.

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("X-"), HEX2 testbyte]

Same as previous example, but we have used HEX2 instead of HEX.
This causes the compiler to collect the string "10" and store
it in testbyte. Value in testbyte is $10 or %00010000.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 47

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("Z-"), HEX testbyte]

Since this example waits for the string "Z-", it ignores the
"1011" string. The first string it finds that could be hex
data is "F7". Value in testbyte is $F7.

2.10.4 SKIP

SKIP n

Use SKIP (followed by a count 255 or less) to skip the specified number of
characters before resuming processing.

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("Y"), SKIP 2, DEC2 testword, testbyte]

Waits for the string "Y", then skips the next 2 characters "-
5". It then collects the 2-digit decimal number 46 and stores
it to testword. The next byte received is "Z", which is stored
as ASCII to testbyte.

2.10.5 STR

STR ArrayVar\n{\c}

The STR modifier is used to move data into an array variable without converting it.

STR must be followed by a backslash and a number that specifies how many
characters (bytes) to collect.

Optionally, an additional backslash can be added and followed by a character,
cause STR to collect characters until it encounters the character you specify.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

48 www.melabs.com 2013-03-06

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("F"), STR test8\8]

Waits for the string "F", then collects the next 8 characters.
These are stored as ASCII in 8 locations of the array variable
test8. Values in test8 array are:

test8[0] = "7"
test8[1] = "Z"
test8[2] = "Z"
test8[3] = "-"
test8[4] = "0"
test8[5] = "0"
test8[6] = "0"
test8[7] = "1"

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("Z-"), STR test8\8\"0"]

The STR item is similar to the previous example, but it
demonstrates the use of the stop character "0". When it
encounters "0" at the sixth character, it replaces it and fills
the rest of the test8 array with null (zero) values. Values in
test8 array are:

test8[0] = "F"
test8[1] = "7"
test8[2] = "Z"
test8[3] = "z"
test8[4] = "-"
test8[5] = 0
test8[6] = 0
test8[7] = 0

2.10.6 WAIT

WAIT ()

The WAIT() modifier is used to suspend processing until a match for a specific
constant to string is encountered.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 49

The data within the parentheses can be a comma-separated list of values, a string
in quotes, or a combination of both.

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("X"), testbyte]

Waits for ASCII "X", then reads the next byte without a
modifier. Numeric value of testbyte is 45, the ASCII code for
"-".

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("Y-"), DEC testword, WAIT("-"), HEX testbyte]

Waits for the string "Y-", then collects a string that could
represent a decimal number ("546"). It then waits again for
the string "-". After that it collects the next string that
looks like hex data, "F7".

input: "X-1011Y-546Z-F7ZZ-0001"
[WAIT("Z",45), STR test8\8\"0"]

This example demonstrates how you can put multiple characters
in the WAIT. It waits for the string "Z-", since the ASCII
code for "-" is 45.

2.10.7 WAITSTR

WAITSTR ArrayVar{\n}

WAITSTR is used like WAIT, but it attempts to match against a string that has been
previously stored in an array variable.

The following examples use the test8 array in the WAITSTR modifier. These
examples use ARRAYWRITE to set the value in test8 before each test.

ARRAYWRITE test8, ["X-"]
input: "X-1011Y-546Z-F7ZZ-0001"
[WAITSTR test8\2, testbyte]

Waits for ASCII "X-", then reads the next byte without a
modifier. testbyte = "1"

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

50 www.melabs.com 2013-03-06

ARRAYWRITE test8, ["F7ZZ-"]
input: "X-1011Y-546Z-F7ZZ-0001"
[WAITSTR test8\5, testbyte]

Waits for ASCII "F7ZZ-", then reads the next byte without a
modifier. testbyte = "0"

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 51

2.11 Output Modifiers for Formatting Strings
The following information applies to output commands ARRAYWRITE, DEBUG,
SEROUT2, HSEROUT, HSEROUT2, and LCDOUT. All of these commands accept
an item list to determine output. Numeric data included in this item list can be
converted to ASCII strings using the following modifiers.

Output Modifiers for Formatting Strings
Modifier Operation
{I}{S}DEC{1..10} Send decimal digits
{I}{S}BIN{1..32} Send binary digits
{I}{S}HEX{1..8} Send hexadecimal digits
REP char\count Send character c repeated n

times
STR ArrayVar{\count} Send string of n characters

For the examples in this section, item lists will be denoted with square brackets
([]), even though some commands do not use brackets. Please use the enclosing
brackets only when appropriate for the command you are using.

2.11.1 DEC

{I}{S}DEC{1..10}

Use DEC to convert a numeric value to a string that represents the number in
decimal format.

When preceded by the letter "I", DEC will format the output with a leading "#"
character to signify decimal.

When preceded by the letter "S", DEC will interpret the input value as signed (two's-
complement), and format the output with a minus sign "-" if negative. If the "S" is
not used, DEC interprets all values (including signed LONGs) as positive integers.

When a number (1-10) is appended to the DEC modifier, the output is limited to the
specified number of decimal digits. If the number of digits specified is more than
required to represent the value, leading zeros will be used to pad the output string.
If the number of digits specified is less than required to accurately represent the
value, only the specified number of trailing digits will be displayed and the most
significant (leading) digits will be truncated.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

52 www.melabs.com 2013-03-06

testword = 50123
[DEC testword]
output: "50123"

testword = 56
[DEC testword]
output: "56"

The most common usage of DEC. Number of output digits changes
with the value of the input.

testword = 50123
[DEC3 testword]
output: "123"

testword = 56
[DEC3 testword]
output: "056"

DEC3 is used to force a 3-character output. Leftmost digits
are truncated if necessary. Leading zeros are used to pad the
output.

testword = 50123
[SDEC testword]
output: "-15413"

testword = 56
[SDEC testword]
output: "56"

testword = 56
[SDEC4 testword]
output: "0056"

Since 50123 (stored in a 16-bit variable) is equivalent to the
signed, two's-complement value -15413, SDEC will output the
negative value with a minus sign.

If the sign bit isn't set in a variable, as is the case with
value 56, SDEC gives the same result as DEC.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 53

testword = 50123
[ISDEC testword]
output: "#-15413"

testword = 56
[IDEC testword]
output: "#56"

IDEC and ISDEC prepend a "#" character before the output
string.

testword = 50123
[DEC testword/1000, ".", DEC3 testword]
output: "50.123"

DEC can be used to easily generate an output string with
decimal places.

"DEC testword/1000" outputs the decimal representation of the
testword value divided by one thousand ("50").

"DEC3 testword" outputs the least-significant three decimal
digits ("123").

2.11.2 BIN

{I}{S}BIN{1..32}

Use BIN to convert a numeric value to a string that represents the number in binary
format.

When preceded by the letter "I", BIN will format the output with a leading "%"
character to signify binary.

When preceded by the letter "S", BIN will interpret the input value as signed (two's-
complement), and format the output with a minus sign "-" if negative. If the "S" is
not used, BIN interprets all values (including signed LONGs) as positive integers.

When a number (1-32) is appended to the BIN modifier, the output is limited to the
specified number of binary digits. If the number of digits specified is more than
required to represent the value, leading zeros will be used to pad the output string.
If the number of digits specified is less than required to accurately represent the

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

54 www.melabs.com 2013-03-06

value, only the specified number of trailing digits will be displayed and the most
significant (leading) digits will be truncated.

testbyte = %11001011
[BIN testbyte]
output: "11001011"

BIN creates an output string composed of characters "1" and "0"
to represent the binary value.

testbyte = %11001011
[IBIN testbyte]
output: "%11001011"

IBIN prepends a "%" character before the value to signify
binary.

testbyte = %11001011
[SBIN testbyte]
output: "-110101"

Since %11001011 can represent a negative number when stored in
a byte variable, SDEC will output the string to show this.

testbyte = %11001011
[IBIN16 testbyte]
output: "%0000000011001011"

IBIN16 forces the output to be 16 binary digits and prepends a
"%" to signify binary

2.11.3 HEX

{I}{S}HEX{1..8}

Use HEX to convert a numeric value to a string that represents the number in
hexadecimal format.

When preceded by the letter "I", HEX will format the output with a leading "$"
character to signify hexadecimal.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 55

When preceded by the letter "S", HEX will interpret the input value as signed (two's-
complement), and format the output with a minus sign "-" if negative. If the "S" is
not used, HEX interprets all values (including signed LONGs) as positive integers.

When a number (1-8) is appended to the HEX modifier, the output is limited to the
specified number of hexadecimal digits. If the number of digits specified is more
than required to represent the value, leading zeros will be used to pad the output
string. If the number of digits specified is less than required to accurately represent
the value, only the specified number of trailing digits will be displayed and the most
significant (leading) digits will be truncated.

testword = $C3F0
[HEX testword]
output: "C3F0"

HEX creates an output string that represents a hexadecimal
number.

testword = $C3F0
[IHEX testword]
output: "$C3F0"

IHEX prepends a "$" character to signify hexadecimal

testword = $C3F0
[SHEX testword]
output: "-3C10"

SHEX interprets the 16-bit input value as a two's-complement
signed number and outputs a string that represents the negative
value.

testword = $C3F0
[HEX2 testword]
output: "F0"

HEX2 limits the output string to two hexadecimal digits

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

56 www.melabs.com 2013-03-06

2.11.4 REP

REP char\count

Use REP to repeat a character a specified number of times in the output string.

The character is limited to a single character. Multiple-character strings are not
allowed.

The character count may be a constant or variable, maximum 255.

[REP "@"\16]
output: "@@@@@@@@@@@@@@@@"

REP is used to repeat a single character multiple times.

testbyte = 16
[REP "@"\testbyte]
output: "@@@@@@@@@@@@@@@@"

A variable may be used to store the character and/or the count.
This can be useful for padding with a variable number of
spaces.

2.11.5 STR

STR ArrayVar{\count}

STR followed by a byte array variable and optional count will send a string of
characters.

The number of output characters may be specified by a count appended with a
backslash. The count can be a constant or variable, maximum value 255.

Output begins at the zero location in the array and counts upward. If a null (zero) is
encountered in the array, the output is terminated.

ARRAYWRITE testarray, ["Hello World",0]
[STR testarray\5]
output: "Hello"

Use STR to output the contents of an array variable. The \5
causes only the first 5 characters in the array to be output.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 57

ARRAYWRITE testarray, ["Hello World",0]
[STR testarray]
output: "Hello World"

Use STR to output the contents of an array variable. Output
terminates when the null (zero) value is encountered.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

58 www.melabs.com 2013-03-06

2.12 Numbers
When you write numeric values in a program, PBP allows you to write them as
base-10 decimal, base-16 hexadecimal, or base-2 binary.

To write a decimal number, simply write it without a prefix:

x = 255

To write a hexadecimal number, prefix it with "$" to let PBP know how to interpret it:

x = $FF

To write a binary number, prefix it with "%":

x = %11111111

There is no penalty associated with one number format over another. You may
choose the format that makes the most sense to you. To PBP, a number is a
number. These choices are simply different ways to represent the exact same
value.

PBP will also accept a quoted ASCII character as a number. If you write a
character in quotes, it will be converted to the numeric ASCII code that represents
the character in the standard ASCII character set:

x = "A" ' same as writing x = 65

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 59

2.13 Registers
The term "Register" refers to a special memory location that is built into the
microcontroller. These locations are part of the construction of the chip, and they
each perform a special function. In Microchip's documents, you will see them
referred to as "Special Function Registers" or "SFRs".

In PBP programs, registers may be accessed by name, without any special pre-
definition. We call this Direct Register Access. When you read a PBP example
program, you may see something like:

ANSEL = 0 ' Make all pins digital

This can be confusing to the novice, because "ANSEL" isn't declared as a variable
and it isn't a command. It is the name of a register on a specific PIC
microcontroller. Note that the register names aren't the same for all PIC devices,
nor do similarly-named registers work the same from one device to the next.

The details about the registers are found in the Microchip datasheet for the device
you are compiling for. The datasheet is your friend. We don't advocate reading it
from cover to cover in one sitting, but you need to be comfortable with it as a
reference document. It holds the keys to exploiting the power of the
microcontroller.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

60 www.melabs.com 2013-03-06

2.14 Comments
Comments in PBP are denoted with an apostrophe (') or a semicolon (;).

Comments don't consume any resources. Most programmers will agree that you
will never save time by omitting a comment. A well written program devotes more
space to comments than to code. Our recommendation is to shrink your code,
expand your comments.

There is no penalty for long, informative comments:

 ' using IOCBF you can tap 1 or more keys very fast, and
 ' never miss a press. Much faster than reading the
 ' entire port. And key presses do not generate an
 ' interrupt. Only set flag bits in IOCBF for each
 ' individual input that was edge-triggered.

 IF IocFlag THEN ' if keys SW13, 14, 15 or 16 were
 ' pressed,
 State = 1 ' indicate LCD update needed
 GOSUB GetKeys ' get the button/buttons pressed
 ENDIF

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 61

2.15 Case Sensitivity
PBP is not case sensitive, but Assembly Language is. This means that there are
situations where case matters.

2.15.1 DEFINEs

Since many of the DEFINEs in PBP pass data directly to the assembler, they
should be considered case-sensitive. All defined parameters should be written in
upper-case:

DEFINE OSC 20 ' Correct
DEFINE osc 20 ' Incorrect, and will not

generate an error message

2.15.2 Variables

PBP doesn't differentiate different case-versions of variable names. To PBP,
"speed" is the same as "Speed".

Sometimes, though, a variable name will be written in an Assembly Language
routine that is included in the PBP program using commands @ or ASM..ENDASM.
In the Assembly Language code, variable names do become case-sensitive.

Speed VAR BYTE SYSTEM

speed = 0 'Allowed in PBP
@ clrf speed 'may cause error
@ clrf Speed 'Correct

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

62 www.melabs.com 2013-03-06

2.16 White Space
White Space refers to spaces and tabs inserted in commands. Inserting white
space thoughtfully can make a program easier to read and understand. Some PBP
commands need white space to separate things. PBP doesn't care if tabs are used
instead of spaces, nor does it care if multiple white space characters are used
instead of a single character.

LCDOUT DEC speed 'Single spaces used
LCDOUT DEC speed 'Tabs or multiple spaces used

Assembly Language is sensitive to starting column, and starting column is
controlled by adding white space. The correct Assembly Language syntax is
beyond the scope of this manual, but here is an example of the most common
error:

@clrf Speed ;Command clrf in first column
causes error

@ clrf Speed ;Correct with tab or spaces

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 63

2.16.1 Tabbing For Readability

It is customary to indent program lines using tabs to help show the intended
structure of a program. Blocks of code that operate conditionally, or in a loop, are
indented to make the conditional or loop structure easier to see. Nested blocks and
loops are given an additional level of indentation. Consider the following example
for readability.

FOR x = 0 TO 8
 PORTA = x
 IF x = 2 THEN
 PORTB = PORTB + 1
 ELSE
 PORTB = PORTC
 ENDIF
NEXT x

Without indented lines, the program is much more difficult to decipher:

FOR x = 0 TO 8
PORTA = x
IF x = 2 THEN
PORTB = PORTB + 1
ELSE
PORTB = PORTC
ENDIF
NEXT x

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

64 www.melabs.com 2013-03-06

2.17 Line-Extension (_)
Long lines of program code in PBP can be broken into multiple lines for readability.
This is accomplished using an underscore (_) to tell PBP to continue parsing the
current command on the next line. The underscore must be the last character on
the line that you break.

This is very useful for long lookup tables and item lists:

LOOKUP I, [$45,$35,$67,$7E,_
 $8F,$00,$0F,$C0,_
 $EF,$55,$01,$00], value

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

2013-03-06 www.melabs.com 65

2.18 Line-Concatenation (:)
Multiple commands may be written on a single line using colon characters to tell
PBP where to insert a "virtual" line break. This can pack more code into less
space, but it generally makes the program more difficult to read.

x = x + 2 : HIGH led : LOW cs

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBP Syntax and Programming

66 www.melabs.com 2013-03-06

2.19 INCLUDE
Use PBP's INCLUDE directive to read a text file and place its contents in your
program. INCLUDE performs a simple text substitution at the location where
INCLUDE is written.

INCLUDE "more_code.pbp" 'include file contents here

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Operators

2013-03-06 www.melabs.com 67

Chapter 3: Operators

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Operators

68 www.melabs.com 2013-03-06

Overview of Operators

Math Operators Description

 + Addition
- Subtraction
 * Multiplication
** Top 16 Bits of

Multiplication
*/ Middle 16 Bits of

Multiplication
/ Division
// Remainder (Modulus)
<< Shift Left
>> Shift Right
ABS Absolute Value*
ATN Arctangent
COS Cosine
DCD 2n Decode
DIG Digit
DIV32 31-bit x 15-bit Divide
HYP Hypotenuse
MAX Maximum*
MIN Minimum*
NCD Encode
REV Reverse Bits
SIN Sine
SQR Square Root

Bitwise Operators Description
& Bitwise AND
| Bitwise OR
^ Bitwise Exclusive OR
~ Bitwise NOT
&/ Bitwise NOT AND
|/ Bitwise NOT OR
^/ Bitwise NOT Exclusive OR
<< SHIFT LEFT
>> SHIFT RIGHT

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Operators

2013-03-06 www.melabs.com 69

Comparison Operator Description

= or == Equal to
<> or != Not Equal to
< Less Than to
> Greater Than to
<= Less Than or Equal to
>= Greater Than or Equal to

Logical Operator Description

AND or && Logical AND
OR or || Logical OR
XOR or ^^ Logical Exclusive OR

NOT or ! Logical NOT
ANDNOT Logical NAND
ORNOT Logical NOR
XORNOT Logical NXOR

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Operators

70 www.melabs.com 2013-03-06

PICBASIC PRO Compiler performs all operations in full hierarchal order. This
means that there is precedence to the operators. Multiplies and divides are
performed before adds and subtracts. If incorrect assumptions are made about the
order in which operations are performed, you may encounter unexpected results.
To ensure the operations are carried out in the order that you intended, use
parenthesis to group the operations. Parenthesis may be used to group all types of
operators, including mathematical, comparison, bitwise, and logical.

A = (B + C) * (D - E)

IF (((PORTA >> 4) < 6) OR (PORTB = 0)) THEN…

The following table lists the operators in default hierarchal order. (Parentheses will
override.) Operators with the same precedence level (on the same line in the table
below) will be evaluated in the order (left to right) that they are encountered in the
written expression.

Highest Precedence

() (anything enclosed in parentheses)
- (unary)
! or NOT, ABS, COS, DCD, DIV32, NCD, SIN, SQR
<<, >>, ATN, DIG, HYP, MAX, MIN, REV
*, /, **, */, //
+, - (in math), ~
= or ==, <> or !=, <, <=, >, >=
&, |, ^, &/, |/, ^/
AND, OR, XOR, ANDNOT, ORNOT, XORNOT

Lowest Precedence

Left-to-right is, in our opinion, unacceptable as a method of specifying the order of
evaluation. USE PARENTHESES to avoid ambiguity!

All math operations when compiling with PBPW are unsigned and performed with
16-bit precision. Math operations for PBPL use 32-bit precision and may be signed
or unsigned, depending on the variable-types used.

Bitwise operators, including the shift operators, always operate in an unsigned
fashion, regardless of the variable type they are acting on, signed or unsigned.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Mathematical Operators

2013-03-06 www.melabs.com 71

3.1 Math Operators
Math Operators Description

 + Addition
- Subtraction
 * Multiplication
** Top 16 Bits of

Multiplication
*/ Middle 16 Bits of

Multiplication
/ Division
// Remainder (Modulus)
<< Shift Left
>> Shift Right
ABS Absolute Value*
ATN Arctangent
COS Cosine
DCD 2n Decode
DIG Digit
DIV32 31-bit x 15-bit Divide
HYP Hypotenuse
MAX Maximum*
MIN Minimum*
NCD Encode
REV Reverse Bits
SIN Sine
SQR Square Root

3.1.1 Multiplication

PBPW performs unsigned 16-bit x 16-bit multiplication, while PBPL performs signed
32-bit x 32-bit multiplication.

W1 = W0 * 1000 ' Multiply value in W0 by 1000
and place the result in W1

PBPL interprets only LONG variable types as signed numbers. Words, bytes, and
of course bits are always interpreted as positive, unsigned integers when used as
inputs in a PBP math operation.

If the result of a multiplication could possibly be negative, it should be stored to a
LONG variable type to preserve the sign. If a negative result is placed in a variable
type other than LONG, subsequent calculations using this value will interpret it as a
positive number.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Mathematical Operators

72 www.melabs.com 2013-03-06

B0 = 4
L0 = B0 * -1
' Result is -4 in L0
W0 = B0 * -1 ' Result is 65532 in W0

3.1.2 '*/' and '**' Special Multiplication

There are two special multiplication operators that allow large result values to be
handled in a special way. These operators ignore some of the least-significant
bytes of the result and return higher order bytes instead. With PBPW, this allows
you to work (in a limited way) with 32-bit multiplication results. With PBPL, the top
32 bits of a 48-bit result are available.

The '*/' operator discards the least-significant byte of the result (byte0), and returns
the 4 higher bytes to the result variable. If the result variable is a word or byte, the
value will be truncated to fit.

W3 = W1 */ W0 ' Multiply W1 by W0, ignorebyte0
of the result, return byte1 and
byte2 in W3

L3 = L1 */ L0 ' Multiply L1 by L0, ignore
byte0 of the result, return
byte1 through byte4 in L3

A simple way to think about '*/' is that it shifts the result 8 places to the right,
resulting in an automatic division by 256. (This does not hold true if the result is a
negative number.) This is useful for multiplying by non-integer constants.

If you wished to convert miles to kilometers, for example, you would need to
multiply by a constant 1.6. PBP's integer math won't allow you to write "1.6" in an
equation, but you can use '*/' to accomplish the same result:

kilometers = miles */ 410
' Same as kilometers = (miles * 410) / 256

The '**' operator is similar, but ignores two bytes instead of one. When using PBPL
with long variable types, it returns byte2 through byte5 of the 48-bit result value.
This gives a result that is shifted 16 places to the right, an inherent divide by 65536.

W2 = W0 ** 1000 ‘ Multiply W0 by 1000 and place the high order 16 bits (which
may be 0) in W2

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Mathematical Operators

2013-03-06 www.melabs.com 73

3.1.3 Division

PBPW performs unsigned 16-bit x 16-bit division. The '/' operator returns the 16-bit
result.

PBPL performs signed 32-bit x 32-bit division. The '/' operator returns the 32-bit
result.

W1 = W0 / 1000 ' Divide value in W0 by 1000 and
place the result in W1

PBPL interprets only LONG variable types as signed numbers. Words, bytes, and
bits are always interpreted as positive, unsigned integers when used as terms in a
PBP math operation.

If the result of a division could possibly be negative, it should be stored to a LONG-
sized variable type to preserve the sign. If a negative result is placed in a variable
type other than LONG, subsequent calculations using this value will interpret it as a
positive number.

B0 = 4
L0 = B0 / -1 ' Result is -4 in L0
W0 = B0 / -1 ' Result is 65532 in W0

3.1.4 Remainder (Modulus)

The '//' operator returns the remainder. This is sometimes referred to as the
modulus of the number.

W2 = W0 // 1000
' Divide value in W0 by 1000 and place the remainder in W2

If the result of a division could possibly be negative, it should be stored to a LONG-
sized variable type to preserve the sign. If a negative result is placed in a variable
type other than LONG, subsequent calculations using this value will interpret it as a
positive number.

B0 = 23
L0 = B0 // -4 ' Result is -3 in L0
W0 = B0 // -4 ' Result is 65533 in W0

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Mathematical Operators

74 www.melabs.com 2013-03-06

3.1.5 ABS

ABS returns the absolute value of a number. If a byte is greater than 127 (high bit
set), ABS will return 256 - value. If a word is greater than 32767 (high bit set), ABS
will return 65536 - value. If a long is negative, ABS will return 4294967296 - value.

B1 = ABS B0

ABS always interprets input variables and expressions as two's-complement signed
numbers. This is true regardless of PBPW/PBPL mode selection and/or variable
type.

3.1.6 ATN

ATN returns the 8-bit arctangent of 2 two's-complement 8-bit values. If a byte is
greater than 127 (high bit set), it is treated as a negative value. The arctangent
returned is in binary radians, 0 to 255, representing a range of 0 to 359 degrees.

ang = x ATN y

3.1.7 COS

COS returns the 8-bit cosine of a value. The result is in two’s complement form
(i.e. -127 to 127). It uses a quarter-wave lookup table to find the result. Cosine
starts with a value in binary radians, 0 to 255, as opposed to the usual 0 to 359
degrees.

B1 = COS B0

3.1.8 DCD

DCD returns the decoded value of a bit number. It changes a bit number (0 - 31)
into a binary number with only that bit set to 1. All other bits are set to 0.

B0 = DCD 2 ' Sets B0 to %00000100

3.1.9 DIG

DIG returns the value of a decimal digit. Input the digit number (0 – 9, with 0 being
the rightmost digit). DIG returns the value of the decimal digit that you specified.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Mathematical Operators

2013-03-06 www.melabs.com 75

DIG is commonly used to distill BCD digits from numeric values and to isolate
single digits for display on seven-segment LCD.

B0 = 123 ' Set B0 to 123
B1 = B0 DIG 2 ' Sets B1 to 1 (digit 2 of 123)

3.1.10 DIV32

PBPW’s multiply (*) function operates as a 16-bit x 16-bit multiply yielding a 32-bit
internal result. However, since PBPW only supports a maximum variable size of 16
bits, access to the result had to happen in 2 steps: c = b * a returns the lower 16
bits of the multiply while d = b ** a returns the upper 16 bits. There was no way to
access the 32-bit result as a unit.

In many cases it is desirable to be able to divide the entire 32-bit result of the
multiply by a 16-bit number for averaging or scaling. A special operator has been
provided for this purpose: DIV32. DIV32 is actually limited to dividing a 31-bit
unsigned integer (max 2147483647) by a 15-bit unsigned integer (max 32767).
This should suffice in most circumstances.

As PBPW only allows a maximum variable size of 16 bits, DIV32 assumes that a
multiply was just performed and that the internal compiler variables still contain the
32-bit result of the multiply. No other operation may occur between the multiply and
the DIV32, else the internal variables may be altered, destroying the 32-bit
multiplication result.

This means, among other things, that ON INTERRUPT must be DISABLEd from
before the multiply until after the DIV32. If ON INTERRUPT is not used, there is no
need to add DISABLE to the program. Interrupts in assembler should have no
effect on the internal variables so they may be used without regard to DIV32.

The following code fragment shows the operation of DIV32:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Mathematical Operators

76 www.melabs.com 2013-03-06

a VAR WORD
b VAR WORD
c VAR WORD
dummy VAR WORD
b = 500
c = 1000
DISABLE ' Necessary if On Interrupt used
dummy = b * c ' Could also use ** or */
a = DIV32 100
ENABLE ' Necessary if On Interrupt used

This program assigns b the value 500 and c the value 1000. When multiplied
together, the result would be 500000. This number exceeds the 16-bit word size of
a variable (65535). So the dummy variable contains only the lower 16 bits of the
result. In any case, it is not used by the DIV32 function. DIV32 uses variables
internal to the compiler as the operands.

In this example, DIV32 divides the 32-bit result of the multiplication b * c by 100 and
stores the result of this division, 5000, in the word-sized variable a.

DIV32 is not supported by PBPL as that version of the compiler always uses a 32-
bit x 32-bit divide.

3.1.11 HYP

HYP returns the hypotenuse of a right triangle, or the length of the side opposite the
right angle. It simply calculates the square root of the sum of the squares of the
length of the 2 sides adjacent to the right angle.

For PBPW, the input values are treated as two's-complement numbers representing
a range of +127 to -128. For PBPL, a long variable or constant must be used if a
negative value is to be represented. In any case, the value returned is always
positive.

B2 = B0 HYP B1
' Same as B2 = SQR ((B0 * B0)+ (B1 * B1))

3.1.12 MAX and MIN

MAX and MIN return the maximum and minimum, respectively, of two numbers. It
is usually used to limit numbers to a value.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Mathematical Operators

2013-03-06 www.melabs.com 77

B1 = B0 MAX 100 ' Set B1 to the larger of B0 and
100

B1 = B0 MIN 100 ' Set B1 to the smaller of B0
and 100

W0 = B0 MAX B1 ' Set W0 to the larger of B0 and
B1

W0 = W1 MAX (B1 * B0) ' Set W0 to the larger of W1 and
the result of expression (B1*B0)

3.1.13 NCD

NCD returns the priority encoded bit number (1 - 32) of a value. It is used to find
the highest bit set in a value. It returns 0 if no bit is set.

B0 = NCD %01001000 ' Sets B0 to 7

3.1.14 REV

REV reverses the order of the lowest bits in a value. The number of bits to be
reversed is from 1 to 32.

B0 = %10101100 REV 4 ' Sets B0 to %00000011

The result includes only the reversed bits. The bits that are not reversed are set to
zeroes in the result.

3.1.15 SIN

SIN returns the 8-bit sine of a value. The result is in two’s complement form (i.e. -
127 to 127). It uses a quarter-wave lookup table to find the result. SIN starts with a
value in binary radians, 0 to 255, as opposed to the usual 0 to 359 degrees.

B1 = SIN B0

3.1.16 SQR

SQR returns the square root of a value as an 8-bit integer (16-bit for PBPL).

B0 = SQR W1 ' Sets B0 to square root of W1

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Bitwise Operators

78 www.melabs.com 2013-03-06

3.2 Bitwise Operators
Bitwise Operators Description
& Bitwise AND
| Bitwise OR
^ Bitwise Exclusive OR
~ Bitwise NOT
&/ Bitwise NOT AND
|/ Bitwise NOT OR
^/ Bitwise NOT Exclusive OR
<< SHIFT LEFT
>> SHIFT RIGHT

Bitwise operators perform manipulation of binary values. Since all numbers can be
expressed as binary, bitwise operators can be performed on all values in PBP,
including variables, constants, and internal registers.

With the exception of the SHIFT and Bitwise NOT operators, a bitwise operator
applies its bitwise (Boolean) logic to each corresponding bit of two input values.
The result may be placed in a variable or used in a comparison. Consider the
following AND operation between two BYTE values:

 %10101010
& %11110000
 %10100000

Each of the 8 bit-positions is individually combined for a single bit result:

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 %1 %0 %1 %0 %1 %0 %1 %0
& %1 %1 %1 %1 %0 %0 %0 %0
 %1 %0 %1 %0 %0 %0 %0 %0

If the destination variable type has more bits than either input term, the result will be
right-justified and undetermined bits will be zeros. For example:

A VAR BYTE
B VAR BYTE
C VAR WORD

A = %10101010
B = %11110000
C = A & B ' C = %0000000010100000

The result of the AND operation of the two byte inputs is %10100000, but since the
C variable is a 16-bit WORD the result in C will be %0000000010100000.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Bitwise Operators

2013-03-06 www.melabs.com 79

For each Boolean-type operator, we express the logic in a small table using a
single bit. The table shows the inputs as A and B, then the result of all conditions of
both inputs.

3.2.1 & Bitwise AND

A B A & B
0 0 0
0 1 0
1 0 0
1 1 1

If A and B are 1, then result is 1.

The & operator is commonly used to "mask" bits (force bits to zero):

result = PORTB & %00001111 'Force the most significant 4
bits to zero

3.2.2 | Bitwise OR

A B A | B
0 0 0
0 1 1
1 0 1
1 1 1

If A or B is 1, then result is 1.

The | operator can be used to force bits to a logic one:

PORTB = PORTB | %00000011 ' Force PORTB.0 and PORTB.1 to
one

3.2.3 ^ Bitwise EXCLUSIVE OR (XOR)

A B A ^ B
0 0 0
0 1 1
1 0 1
1 1 0

If only A or only B is 1, then result is 1.

The ^ operator is commonly used to invert selected bits:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Bitwise Operators

80 www.melabs.com 2013-03-06

PORTB = PORTB ^ %00001111 'Invert only bits 3,2,1,0 of
PORTB

3.2.4 ~ Bitwise NOT (INVERT)

A ~A
0 1
1 0

Result is the inverse of A.

The ~ operator works with a single input expression. The input is the expression
immediately following the operator.

PORTB = ~ PORTB ' Invert every bit in PORTB
result = ~ (PORTB & %00001111)
'Invert the result of the & operation

3.2.5 &/ Bitwise NOT AND (NAND)

A B A &/ B
0 0 1
0 1 1
1 0 1
1 1 0

Result is the inverse of bitwise AND.

The &/ operator returns the same result as the combination of ~ and &:

result = PORTB &/ %00001111
result = ~(PORTB & %00001111) ' Same result

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Bitwise Operators

2013-03-06 www.melabs.com 81

3.2.6 |/ Bitwise NOT OR (NOR)

A B A |/ B
0 0 1
0 1 0
1 0 0
1 1 0

Result is the inverse of bitwise OR.

The &/ operator returns the same result as the combination of ~ and !:

result = PORTB |/ %00001111
result = ~ (PORTB | %00001111) ' Same result

3.2.7 ^/ Bitwise NOT EXCLUSIVE OR (XNOR)

A B A ^/ B
0 0 1
0 1 0
1 0 0
1 1 1

Result is the inverse of bitwise XOR.

The ^/ operator returns the same result as the combination of ~ and ^:

result = PORTB ^/ %00001111
result = ~(PORTB ^ %00001111) ' Same result

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Bitwise Operators

82 www.melabs.com 2013-03-06

3.2.8 << SHIFT LEFT

The << operator shifts all the bits in the input to the left the specified number of
places. The bits shifted "out" on the left are discarded. New bits shifted in are
always zeros. Consider the following example that represents a SHIFT LEFT one
place: (%10110111 << 1)

(discard) ← 1 ← 0 ← 1 ← 1 ← 0 ← 1 ← 1 ← 1 ← (zero)
 0 1 1 0 1 1 1 0

Example:

A = $10110111
result = A << 1 ' result = %01101110
result = A << 2 ' result = %11011100
result = A << 3 ' result = %10111000

SHIFT LEFT is commonly used to multiply a value by a power of 2. Shifting
executes a lot faster than multiplication, but is limited to powers of 2 (2, 4, 8, etc.)
because of the operation can only be performed on binary numbers.

result = value << 2
' SHIFT LEFT 2 places, same as (result = value * 4)

Another example is to move bit values in a variable out of the way so new bit values
may be "shifted in" from the right:

FOR i = 0 TO 7
value = value << 1 'Shift bits left one place
value.0 = PORTB.0 'read and store input

NEXT i

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Bitwise Operators

2013-03-06 www.melabs.com 83

3.2.9 >> SHIFT RIGHT

SHIFT RIGHT is identical to SHIFT LEFT, except the bits are moved to the right,
the rightmost (least significant) bits are discarded, and zeros are used to fill the
leftmost (most significant) bits.

SHIFT RIGHT is commonly used to divide a value by a power of 2. Shifting
executes a lot faster than division, but is limited to powers of 2 (2, 4, 8, etc.)
because of the operation can only be performed on binary numbers.

result = value >> 2
' SHIFT LEFT 2 places, same as (result = value / 4)

Another common application is to move the most-significant 4 bits to the least
significant position in the variable:

result = PORTB >> 4 'Read most-significant half of
PORTB

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Comparison Operators

84 www.melabs.com 2013-03-06

3.3 Comparison Operators
Comparison Operator Description

= or == Equal to
<> or != Not Equal to
< Less Than to
> Greater Than to
<= Less Than or Equal to
>= Greater Than or Equal to

Comparison operators are used to compare (test the relationship of) two
expressions. The concept is that the operator returns a true value (1) when the
condition is satisfied and a false (0) if the condition is not satisfied. These
operators are used in commands that perform tests in order to direct the program
flow. Some common examples would be:

' Test for a switch input
IF (PORTB.0 = 0) THEN switched

' Loop until a counter expires
DO WHILE (counter > 0)
LOOP

3.3.1 Signed vs. Unsigned Comparisons

Numbers in PBP may be treated as unsigned (always positive) or signed (positive
and negative), depending on the type of variable in use. LONG variables are
treated as signed, other variable types are not.

Bval VAR BYTE
Lval VAR LONG
Bval = -1 ' result is hex $FF
Lval = -1 ' result is hex $FFFFFFFF

In the above example, PBP will treat the value in Bval as 255, but it will treat the
value in Lval as -1. If you look for a negative value in Bval, you will never find it.

If (Bval < 0) THEN negative 'Will never test true

Consideration should also be given to the typecasting of temp variables that PBP
uses when a compound comparison is written. Consider the example:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Comparison Operators

2013-03-06 www.melabs.com 85

Bval VAR BYTE
Bval = 0
IF ((Bval – 1) < 0) THEN negative

In the above example, the expression "Bval – 1" will be written to a temp variable
for holding before the comparison is executed. When using PBPW, the temp
variable will be a WORD. When using PBPL, the temp variable will be a LONG.
The result is that the comparison will return false in PBPW, but true in PBPL.

As with all operators in PBP, comparisons should be grouped with parenthesis to
specify the order in which the comparisons are performed (see Logical Operators).

3.3.2 Equal To (= or ==)

expression1 = expression2

If the evaluated numeric result of expression1 is equal to that of expression2, the
result is true. Otherwise, the result is false.

3.3.3 Not Equal To (<> or !=)

expression1 <> expression2

If the evaluated numeric result of expression1 is not equal to that of expression2,
the result is true. Otherwise, the result is false.

3.3.4 Less Than (<)

expression1 < expression2

If the evaluated numeric result of expression1 is less than that of expression2, the
result is true. Otherwise, the result is false.

3.3.5 Greater Than (>)

expression1 > expression2

If the evaluated numeric result of expression1 is greater than that of expression2,
the result is true. Otherwise, the result is false.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Comparison Operators

86 www.melabs.com 2013-03-06

3.3.6 Less Than or Equal To (<=)

expression1 <= expression2

If the evaluated numeric result of expression1 is less than, or equal to, that of
expression2, the result is true. Otherwise, the result is false.

3.3.7 Greater Than or Equal To (=>)

expression1 => expression2

If the evaluated numeric result of expression1 is greater than, or equal to, that of
expression2, the result is true. Otherwise, the result is false.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Logical Operators

2013-03-06 www.melabs.com 87

3.4 Logical Operators
Logical Operator Description

AND or && Logical AND
OR or || Logical OR
XOR or ^^ Logical Exclusive OR

NOT or ! Logical NOT
ANDNOT Logical NAND
ORNOT Logical NOR
XORNOT Logical NXOR

Logical operators are used to logically combine multiple comparisons. In other
words, they allow you to test for multiple conditions within a single command. This
is best shown by example:

IF (x = 0) AND ((y = 0) OR (z = 0)) THEN label

The above example will jump to the label if either y or z are equal to zero, provided
that x is also equal to zero.

3.4.1 Using Parentheses

Note the way parentheses are used in the preceding example to specify the
grouping of the logic. It's important to realize that, without parentheses, the logic
can be interpreted differently:

IF x = 0 AND y = 0 OR z = 0 THEN label

The most likely result here will be that PBP interprets the conditional statement
from left to right and groups it like this:

IF ((x = 0) AND (y = 0)) OR (z = 0) THEN label

The operation of the example has now changed dramatically. It will now jump to
label if z is equal to zero, regardless of the state of x and y. USE PARENTHESES
to avoid this confusion.

3.4.2 Logical vs. Bitwise

Logical operators are very different than bitwise operators! There are
circumstances under which PBP will allow the use of logical operators in

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Logical Operators

88 www.melabs.com 2013-03-06

expressions. This means that no error message will be generated when you
mistakenly use a logical operator in a bitwise calculation. Consider the following:

result = PORTB AND %00001111
' Returns logical result (1 or 0)

The above example will compile and give a result. The value of the result can only
be one or zero (true or false). If the intent is to use a bitwise operation to obtain a
binary result, you MUST USE BITWISE OPERATORS:

result = PORTB & %00001111
' Returns 8-bit binary result

When considering the truth status of expressions that may equate to numeric or
binary values, PBP interprets a zero value as false and anything else as true.
Therefore, "IF PORTB THEN" is the same as "IF PORTB > 0 THEN".

3.4.3 AND

expression1 AND expression2

If both expression1 and expression2 are true, the result is true. If either expression
is false, the result is false.

3.4.4 OR

expression1 OR expression2

If either expression1 or expression2 is true, the result is true. If both expressions
are false, the result is false.

3.4.5 XOR

expression1 XOR expression2

If only expression1 or only expression2 is true, the result is true. If both
expressions are false, the result it false. If both expressions are true, the result is
false.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Logical Operators

2013-03-06 www.melabs.com 89

3.4.6 NOT

NOT expression

If expression is true, result is false. If expression is false, result is true.

3.4.7 ANDNOT

expression1 ANDNOT expression2

If both expression1 and expression2 are false, the result is true. If either
expression1 or expression2 is true, the result is false. Logically the same as:

NOT (expression1 AND expression2)

3.4.8 ORNOT

expression1 ORNOT expression2

If either expression1 or expression2 is true, the result is false. If both expression1
and expression2 are false, the result is true. Logically the same as:

NOT (expression1 OR expression2)

3.4.9 XORNOT

expression1 XORNOT expression2

If only expression1 or only expression2 is true, the result is false. If both
expressions are false, the result is true. If both expressions are true, the result is
true. Logically the same as:

NOT (expression1 XOR expression2)

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Directives

90 www.melabs.com 2013-03-06

Chapter 4: Directives

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Directives

2013-03-06 www.melabs.com 91

Directives are different than commands in that they only affect how the program is
compiled. They don't actually execute when the program runs on the
microcontroller. However, they may cause the compiler to insert code that does
execute at run-time.

There are two types of directives in this section:

Preprocessor directives, denoted with a # character, were put in place to fill the
need for users to conditionally compile sections of code and to access areas like
device configuration which requires code-replacement at the lowest level.

Compile-Time directives advise the compiler to insert code for event handling, most
notably interrupt handling. Directives like ON INTERRUPT specify a label for the
handling routines. All compile-time directives also serve as markers, or boundaries,
to denote sections in your program where event-handling code is inserted or
omitted.

Note that compile-time directives are not dependent on program flow. They act
"geographically" in your program, causing PBP to change compile methods for lines
that fall below the directive. When you write "ENABLE", think "Enable for all lines
below this point".

In interrupt code examples, you may see something like:

GOTO mainloop

DISABLE

myint: ' Interrupt handler routine

Many users question this, pointing out that the DISABLE will never execute. They
are correct, it will never execute, but it doesn't matter. DISABLE is a marker that
tells PBP to omit interrupt-checking background code for all program lines that are
placed below the directive line. A correctly-commented example would read:

GOTO mainloop

DISABLE ' Disable interrupt-checking for

all routines that follow.
myint: ' Interrupt handler routine

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DISABLE

92 www.melabs.com 2013-03-06

4.1 DISABLE
DISABLE

DISABLE both debug and interrupt processing following this instruction. Interrupts
can still occur but the BASIC interrupt handler in the PICBASIC PRO program and
the debug monitor will not be executed until an ENABLE is encountered.

DISABLE and ENABLE are pseudo-ops in that they give the compiler directions,
rather than actually generate code. See ON DEBUG and ON INTERRUPT for more
information.

DISABLE ' Disable interrupts in handler

myint:
 led = 1 ' Turn on LED when interrupted
Resume ' Return to main program

Enable ' Enable interrupts after

handler

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

 DISABLE DEBUG

2013-03-06 www.melabs.com 93

4.2 DISABLE DEBUG
DISABLE DEBUG

DISABLE DEBUG processing following this instruction. The debug monitor will not
be called between instructions until an ENABLE or ENABLE DEBUG is
encountered.

DISABLE DEBUG and ENABLE DEBUG are pseudo-ops in that they give the
compiler directions, rather than actually generate code. See ON DEBUG for more
information.

DISABLE DEBUG ' Disable debug monitor calls

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

 DISABLE INTERRUPT

94 www.melabs.com 2013-03-06

4.3 DISABLE INTERRUPT
DISABLE INTERRUPT

DISABLE INTERRUPT processing following this instruction. Interrupts can still
occur but the BASIC interrupt handler in the PICBASIC PRO program will not be
executed until an ENABLE or ENABLE INTERRUPT is encountered.

DISABLE INTERRUPT and ENABLE INTERRUPT are pseudo-ops in that they give
the compiler directions, rather than actually generate code. See ON INTERRUPT
for more information.

DISABLE INTERRUPT ' Disable interrupts in handler

myint:

led = 1 ' Turn on LED when interrupted
Resume ' Return to main program

Enable Interrupt ' Enable interrupts after

handler

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ENABLE

2013-03-06 www.melabs.com 95

4.4 ENABLE
ENABLE

ENABLE debug and interrupt processing that was previously DISABLEd following
this instruction.

DISABLE and ENABLE are pseudo-ops in that they give the compiler directions,
rather than actually generate code. See ON DEBUG and ON INTERRUPT for more
information.

DISABLE ' Disable interrupts in handler
myint:

led = 1 ' Turn on LED when interrupted
RESUME ' Return to main program

ENABLE ' Enable interrupts after

handler

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ENABLE DEBUG

96 www.melabs.com 2013-03-06

4.5 ENABLE DEBUG
ENABLE DEBUG

ENABLE DEBUG processing that was previously DISABLEd following this
instruction.

DISABLE DEBUG and ENABLE DEBUG are pseudo-ops in that they give the
compiler directions, rather than actually generate code. See ON DEBUG for more
information.

ENABLE DEBUG ' Enable calls to the debug
monitor

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ENABLE INTERRUPT

2013-03-06 www.melabs.com 97

4.6 ENABLE INTERRUPT
ENABLE INTERRUPT

ENABLE INTERRUPT processing that was previously DISABLEd following this
instruction.

DISABLE INTERRUPT and ENABLE INTERRUPT are pseudo-ops in that they give
the compiler directions, rather than actually generate code. See ON INTERRUPT
for more information.

DISABLE INTERRUPT ' Disable interrupts in ISR

myint:

led = 1 ' Turn on LED when interrupted
RESUME ' Return to main program

ENABLE INTERRUPT ' Enable interrupts for code

below this point in the file.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ON DEBUG

98 www.melabs.com 2013-03-06

4.7 ON DEBUG
ON DEBUG GOTO Label

ON DEBUG allows a debug monitor routine to be executed between each
PICBASIC PRO command.

The method by which this happens is similar to the method used by ON
INTERRUPT GOTO. Once ON DEBUG GOTO is encountered, a call to the
specified debug label is inserted before each PICBASIC PRO instruction in the
program. DISABLE DEBUG prevents the insertion of this call while ENABLE
DEBUG resumes the insertion of the call.

A monitor routine may be written that is activated before each instruction. This
routine can send data to an LCD or to a serial communication program. Any
program information may be displayed or even altered in this manner.

A word-sized system variable that resides in BANK0 is required to provide a place
to store the address the program was at before the monitor routine was called by
ON DEBUG GOTO. An additional byte-sized system variable is required for PIC18
parts.

DEBUG_ADDRESS VAR WORD BANK0 SYSTEM
DEBUG_ADDRESSU VAR BYTE BANK0 SYSTEM 'PIC18 only

Another byte-sized variable may be used to return the level of the current program
stack:

DEBUG_STACK VAR BYTE BANK0 SYSTEM

This level should never be greater than 4 for 12- and 14-bit core PIC MCUs, 12 for
PIC17 devices or 27 for PIC18 devices in a PICBASIC PRO program. The supplied
variable will be incremented at each GOSUB and decremented at each RETURN.
This variable should be set to 0 at the beginning of the program.

Adding this variable to a program does add overhead in that the value of the
variable must be incremented and decremented at each GOSUB and RETURN.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ON INTERRUPT

2013-03-06 www.melabs.com 99

4.8 ON INTERRUPT
ON INTERRUPT GOTO Label

ON INTERRUPT allows the handling of microcontroller interrupts by a PICBASIC
PRO subroutine. This method is intended to simplify the creation of interrupt
service routines. It may not respond to interrupts as quickly as methods using
Assembly Language.

See section 6.1 Interrupts Using ON INTERRUPT for a more complete discussion.

ON INTERRUPT GOTO myint ' Interrupt handler is myint
INTCON = %10010000 ' Enable RB0 interrupt
DISABLE ' Disable interrupts in handler
myint:

led = 1 ' Turn on LED when interrupted
INTCON.1 = 0 ' Clear interrupt flag

RESUME ' Return to main program

ENABLE ' Enable interrupts after

handler

To turn off interrupts permanently (or until needed again) once ON INTERRUPT
has been used, set INTCON to $80:

INTCON = $80

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#CONFIG..#ENDCONFIG

100 www.melabs.com 2013-03-06

4.9 #CONFIG...#ENDCONFIG
#CONFIG

;configuration directives in Assembly Language
#ENDCONFIG

#CONFIG can be used to insert a block of Assembly Language directives that
specify settings for target device's configuration words. These settings control
things like the oscillator type, code protection, and other parameters that must be
set before the program code executes. For detailed information about configuration
words, see the datasheet for the specific PIC microcontroller that you are compiling
for. Most datasheets will list the information in a section named "Configuration" or
"Special Features".

The #CONFIG block is similar to the ASM..ENDASM and @ runtime commands
because its contents are written in Assembly Language. It is a special case,
however, and differs from the runtime commands in significant ways. The code
enclosed in a #CONFIG block always replaces the default configuration settings
that PBP would normally include. The code is placed in a special location in the
generated Assembly Language. This location is reserved for configuration
directives; therefore #CONFIG should not be used for other Assembly instructions.

Microchip determines the form and syntax of the actual configuration directives, and
they are not consistent for different families of PIC microcontrollers. We have
attempted to include the information for each chip in a device information file. The
files are located in your PBP install in the Device Reference folder.
(PIC16F877.INFO, PIC18F4620.INFO, etc.)

Here are a few examples that you might use for various parts:

'Config for 16F877A
#CONFIG

__config _XT_OSC & _WDT_ON & _LVP_OFF & _CP_OFF
#ENDCONFIG

'Config for 18F46J50
#CONFIG

CONFIG XINST = OFF
CONFIG PLLDIV = 5
CONFIG WDTPS = 512
CONFIG CPUDIV = OSC1
CONFIG OSC = HSPLL

#ENDCONFIG

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#CONFIG..#ENDCONFIG

2013-03-06 www.melabs.com 101

The conditional compile directives can be used to set the configuration according to
the selected target device. The following code snippet demonstrates this. When
compiled for any device other than the 18F25K20 or 18F25K22, a custom error will
be generated. Note that the example also initializes ANSELx SFRs differently for
the different devices.

#IF __PROCESSOR__ = "18F25K22"
 #config
 CONFIG FOSC = HSHP
 CONFIG WDTEN = OFF
 CONFIG PWRTEN = ON
 CONFIG BOREN = OFF
 CONFIG PBADEN = OFF
 CONFIG MCLRE = INTMCLR
 CONFIG LVP = OFF
 CONFIG DEBUG = OFF
 CONFIG XINST = OFF
 #endconfig
 ANSELA = 0 ; All Digital
 ANSELB = 0
 ANSELC = 0
#ELSE
 #IF __PROCESSOR__ = "18F25K20"
 #config
 CONFIG FOSC = HS
 CONFIG WDTEN = OFF
 CONFIG PWRT = ON
 CONFIG BOREN = OFF
 CONFIG PBADEN = OFF
 CONFIG MCLRE = OFF
 CONFIG LVP = OFF
 CONFIG DEBUG = OFF
 CONFIG XINST = OFF
 #endconfig
 ANSEL = 0 ; All Digital
 ANSELH = 0
 #ELSE
 #ERROR "Program does not support " + __PROCESSOR__
 #ENDIF
#ENDIF

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#DEFINE

102 www.melabs.com 2013-03-06

4.10 #DEFINE
#DEFINE constant_name {value}

The #DEFINE directive creates a compile-time constant and, optionally, assigns a
value to the constant.

constant_name may be any word that is not in the reserved word list, not used for
another entity (variable, constant, alias, label, etc) within the PBP program, and
does not exist as a register (SFR) name in the target PIC MCU.

Constant names should be limited to 31 characters in length. PBP will accept
longer names, but all names will be truncated to 31 characters during compilation.
Names cannot begin with a number. The only special character allowed in names
is the underscore "_" character.

value may be numeric, or a string enclosed in quotation marks:

#DEFINE foo 10
#DEFINE foo1 "18F"

Once created, these constants can be used in conditionals with #IF, #IFDEF, and
#IFNDEF. The can also be used with message directives #MSG, #ERROR, and
#WARNING.

Compile-time constants created with #DEFINE are not the same as run-time
constants created with the CON directive, and are not accessible to PBP program
code. Compile-time constants are only accessible to preprocessor (#) directives
listed in this section.

There are several pre-defined system constants that are created automatically and
accessible in the same fashion as those created manually with #DEFINE. These
constants are named in the form __name__. They are:

__DATE__ Date of compilation from computer's clock
__TIME__ Time of compilation from the computer's clock
__TIMESTAMP__ Date and time of compilation
__PROCESSOR__ The target device part number (eg "18F2620")
__VERSION__ The version of PBP
__LONG__ Indicator that PBPL is in use. (Value is 1 if compiler

is invoked as PBPL, 0 if compiler is invoked as
PBPW.)

__LINE__ The line number where written (Used with #MSG,
#ERROR, or #WARNING to report a line number.)

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#DEFINE

2013-03-06 www.melabs.com 103

__FILE__ The name of the PBP program file

Compile-time constants can also be created with the –d command line switch when
PBPX is invoked. See section 8.3 PBPX Command Line Operation.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#ERROR

104 www.melabs.com 2013-03-06

4.11 #ERROR
#ERROR {"message"}

The #ERROR directive, when encountered, will abort the compilation process and
report the error message that you specify.

This directive should always be written inside of a conditional block. If #ERROR is
used outside of a conditional, it will always abort the compile.

#IF __LONG__ = 0
 #ERROR "This program requires PBPL"
#ENDIF

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#IF..#ELSE..#ENDIF

2013-03-06 www.melabs.com 105

4.12 #IF…#ELSE…#ENDIF
#IF condition {AND|OR condition}

The #IF allows sections of code to be omitted or compiled based on a condition.
The conditional expression must be constructed from compile-time constants that
have been previously declared using #DEFINE. (Run-time variables and constants
cannot be used here.)

The purpose of this directive is to give the user the means to easily and globally
change the program before it is compiled based on a control constant. This is
useful when a single program needs to be compiled with modifications for different
application types, but the user desires to maintain only one program file.

One example would be to compile the same program for two different PIC MCUs.
Consider the case where the hardware exists in two versions; one is an older
version that uses the PIC16F877A, and an updated hardware revision exists that
uses the PIC16F887. These parts are almost identical, except for some differences
in register names and settings. You could accommodate both parts with a
conditional compile.

#IF __PROCESSOR__ = "16F877"

ADCON1 = 7 'All pins digital on the 877A
#ELSE

ANSEL = 0 'AN0-AN7 digital on the 887
ANSELH = 0 'AN8-AN13 digital on the 887

#ENDIF

Note the difference between the compile-time #IF and the run-time IF. When the
#IF is used, only one section of code is actually compiled. The unused code is
"thrown away" before compilation. This saves code space and avoids compilation
errors associated with non-existent register names. The run-time IF would attempt
to compile both sections of code for later execution based on a run-time condition.

The #IF and associated directives will control ANY code written. This includes
variable and constant declarations, configuration blocks, in-line Assembly blocks,
and program code. This makes them very powerful, but opens the door to potential
syntax errors when used improperly. Consider the following:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#IF..#ELSE..#ENDIF

106 www.melabs.com 2013-03-06

#DEFINE omit 1 'Set a flag to omit code

#IF omit <> 1

FOR x = 0 TO 7
 HIGH LED
 PAUSE 100
 LOW LED
 PAUSE 100

#ENDIF
NEXT x

In this example, a compile error will result only when the compile-time constant
"omit" is set to 1. In that case, the top portion of the FOR..NEXT is omitted, leaving
only the NEXT.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#IFDEF..#ELSE..#ENDIF

2013-03-06 www.melabs.com 107

4.13 #IFDEF…#ELSE…#ENDIF
#IFDEF constant

The #IFDEF directive checks to see whether a constant has been defined. With
#IFDEF, the value of the constant is irrelevant. If the constant exists, #IFDEF will
be satisfied, regardless of the value.

Consider the case where hardware exists in two versions; one uses analog inputs
on PORTA and one uses switches on PORTA. You could accommodate both parts
with a conditional compile that is triggered by the existence of the compile-time
constant "SET_DIGITAL":

#DEFINE SET_DIGITAL 'Create constant that specifies
digital operation

#IFDEF SET_DIGITAL 'Compile this section only for

digital operation
ADCON1 = 7 'All pins digital on the 877A

#ENDIF

#IFDEF, like #IF, must be used with #ENDIF. It can also be used with #ELSE:

#DEFINE SET_DIGITAL 'Create constant that specifies
digital operation

#IFDEF SET_DIGITAL 'Compile this section only for

digital operation
ADCON1 = 7 'All pins digital on the 877A

#ELSE
ADCON1 = %00000010 ' Set PORTA analog

#ENDIF

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#IFNDEF..#ELSE..#ENDIF

108 www.melabs.com 2013-03-06

4.14 #IFNDEF…#ELSE…#ENDIF
#IFNDEF constant

The #IFNDEF directive is the opposite of #IFDEF. #IFNDEF evaluates a true
condition if the specified constant is NOT defined.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#MSG

2013-03-06 www.melabs.com 109

4.15 #MSG
#MSG "message"

The #MSG directive causes a message to be reported to the user during
compilation.

The message may be a string enclosed in quotes, a compile-time constant, or a
concatenation of both.

#MSG "Compiling for target " + __PROCESSOR__

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

#WARNING

110 www.melabs.com 2013-03-06

4.16 #WARNING
#WARNING {"message"}

The #WARNING directive will report the specified warning message during
compilation, yet it will allow the compilation to continue.

This directive would normally be written inside of a conditional block. If written
outside of a conditional, a warning will always be reported.

#IF __LONG__ = 1
 #WARNING "PBPW is recommended for this program"
#ENDIF

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Command Overview

2013-03-06 www.melabs.com 111

Chapter 5: Commands

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Command Overview

112 www.melabs.com 2013-03-06

5.1 Overview of Commands
@ Insert one line of assembly language code.
ADCIN Read on-chip analog to digital converter.
ARRAYREAD Parse array (string) and fill variables.
ARRAYWRITE Send variables and constants to array (string).
ASM..ENDASM Insert assembly language code section.
BRANCH Computed GOTO (equivalent to ON GOTO).
BRANCHL BRANCH out of page (long BRANCH).
BUTTON Debounce and auto-repeat input on specified pin.
CALL Call assembly language subroutine.
CLEAR Zero all variables.
CLEARWDT Clear (tickle) Watchdog Timer.
COUNT Count number of pulses on a pin.
DATA Define initial contents of on-chip EEPROM.
DEBUG Asynchronous serial output with fixed pin and baud.
DEBUGIN Asynchronous serial input with fixed pin and baud.
DISABLE Disable ON DEBUG and ON INTERRUPT

processing.
DISABLE DEBUG Disable ON DEBUG processing.
DISABLE INTERRUPT Disable ON INTERRUPT processing.
DO..LOOP Repeatedly execute a block of statements.
DTMFOUT Produce touch-tone frequencies on a pin.
EEPROM Define initial contents of on-chip EEPROM.
ENABLE Enable ON DEBUG and ON INTERRUPT

processing.
ENABLE DEBUG Enable ON DEBUG processing.
ENABLE INTERRUPT Enable ON INTERRUPT processing.
END Stop program execution and enter low power mode.
ERASECODE Erase block of code memory.
EXIT Exit the current block structure.
FOR..NEXT Repeatedly execute statements in a counted loop.
FREQOUT Produce 1 or 2 frequencies on a pin.
GOSUB Call BASIC subroutine at specified label.
GOTO Continue execution at specified label.
HIGH Make pin output high.
HPWM Output hardware pulse width modulated pulse train.
HSERIN Hardware asynchronous serial input.
HSERIN2 Hardware asynchronous serial input, second port.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Command Overview

2013-03-06 www.melabs.com 113

HSEROUT Hardware asynchronous serial output.
HSEROUT2 Hardware asynchronous serial output, second port.
I2CREAD Read from I2C device.
I2CWRITE Write to I2C device.
IF..THEN..ELSE..ENDIF Conditionally execute statements.
INPUT Make pin an input.
LCDIN Read from LCD RAM.
LCDOUT Display characters on LCD.
{LET} Assign result of an expression to a variable.
LOOKDOWN Search constant table for value.
LOOKDOWN2 Search constant / variable table for value.
LOOKUP Fetch constant value from table.
LOOKUP2 Fetch constant / variable value from table.
LOW Make pin output low.
NAP Power down processor for short period of time.
ON DEBUG Execute BASIC debug monitor.
ON GOSUB Computed GOSUB.
ON GOTO Computed GOTO (equivalent to BRANCHL).
ON INTERRUPT Execute BASIC subroutine on an interrupt.
OWIN 1-wire input.
OWOUT 1-wire output.
OUTPUT Make pin an output.
PAUSE Delay (1 millisecond resolution).
PAUSEUS Delay (1 microsecond resolution).
PEEK Read byte from register.
PEEKCODE Read byte from code space.
POKE Write byte to register.
POKECODE Write byte to code space when programming device.
POT Read potentiometer on specified pin.
PULSIN Measure pulse width on a pin.
PULSOUT Generate pulse on a pin.
PWM Output pulse width modulated pulse train to pin.
RANDOM Generate pseudo-random number.
RCTIME Measure pulse width on a pin.
READ Read byte from on-chip EEPROM.
READCODE Read word from code memory.
REPEAT..UNTIL Execute statements until condition is true.
RESUME Continue execution after interrupt handling.
RETURN Continue at statement following last GOSUB.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Command Overview

114 www.melabs.com 2013-03-06

REVERSE Make output pin an input or an input pin an output.
SELECT CASE Compare a variable with different values.
SERIN Asynchronous serial input (BS1 style).
SERIN2 Asynchronous serial input (BS2 style).
SEROUT Asynchronous serial output (BS1 style).
SEROUT2 Asynchronous serial output (BS2 style).
SHIFTIN Synchronous serial input.
SHIFTOUT Synchronous serial output.
SLEEP Power down processor for a period of time.
SOUND Generate tone or white-noise on specified pin.
STOP Stop program execution.
SWAP Exchange the values of two variables.
TOGGLE Make pin output and toggle state.
USBIN USB input.
USBINIT Initialize USB.
USBOUT USB output.
USBSERVICE USB service loop.
WHILE..WEND Execute statements while condition is true.
WRITE Write byte to on-chip EEPROM.
WRITECODE Write word to code memory.
XIN X-10 input.
XOUT X-10 output.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

@

2013-03-06 www.melabs.com 115

5.2 @
@ Statement

When used at the beginning of a line, @ provides a shortcut for inserting one
assembly language Statement into your BASIC program. You can use this shortcut
to mix assembly language code with PICBASIC PRO statements.

i Var Byte
rollme Var Byte
For i = 1 To 4
 @ rlf _rollme, F ; Rotate byte left once
Next i

The @ shortcut can also be used to include assembly language routines in another
file. For example:

@ Include "fp.asm"

@ resets the bank selection to 0 before executing the assembly language
instruction. The bank selection should not be altered using @.

See section 7.1. In-Line Assembly Language for more information.

Related Commands:

CALL
ASM..ENDASM

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ADCIN

116 www.melabs.com 2013-03-06

5.3 ADCIN
ADCIN Channel, Var

Read the on-chip analog to digital converter Channel and store the result in Var.
While the ADC registers can be accessed directly, ADCIN makes the process a
little easier.

Channel is the channel-number assigned to the input pin that you wish to use. This
should not be confused with the pin number or the PORT.PIN designation. Each
ADC input is assigned a channel number, usually designated with the form ANx.
Use only the number. Channel may be a variable.

Var can be a BYTE, WORD, or LONG variable. If the expected result is to be more
than an 8-bit value, BYTE variables should not be used.

ADCIN is a hardware-based command that requires the existence of an Analog
Conversion Peripheral on the PIC MCU. Some configuration is required to allow
proper operation of the peripheral.

The data-direction should be set to input using the appropriate TRIS or TRISIO
register, or by using PBP's INPUT command.

The channel should be configured for analog operation. This is controlled in a
variety of registers in the many PIC MCUs that are supported, so the datasheet
must be consulted. The setting is commonly in registers ADCON1, ANSEL,
ANSELH, ANSELA, ANSELB, ANCON, etc. Look in the datasheet's section on
Analog Converter (ADC) first. If the channel configuration register is not found
there, check the section on I/O ports.

The result should be configured as left-justified if you are performing an 8-bit
conversion. It should be right-justified if more than 8-bit precision is required. This
is also a register setting and will be found in the datasheet section on the Analog
Converter (ADC).

The number of bits in the result that PBP returns is controlled with the following
DEFINE. Most PIC MCUs offer up to 10-bits of precision. Some offer more.

DEFINE ADC_BITS 8 ' Set for 8-bit result (default)

You may set ADC_BITS to values 8-16, but in reality the result will either be 8-bits
or the maximum precision available (10-bits, in most cases).

The ADC clock source should also be set. A DEFINE is offered for this, as well.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ADCIN

2013-03-06 www.melabs.com 117

DEFINE ADC_CLOCK 3 ' Set clock source (rc =3)

The ADC_CLOCK value corresponds to a value set with 2-5 bits in a register within
the PIC MCU. In most cases, the default value of 3 (binary %11) selects an
independent RC clock that returns an accurate conversion result without regard for
the system clock frequency. Conversion execution time may be enhanced in some
cases by changing this setting.

Some PIC MCU defy PBP's attempts to translate the ADC_CLOCK define to a
register setting. If you are having trouble with your ADCIN performance, try setting
the ADC clock source with a direct register setting in addition to the DEFINE.

There is also a defined value called ADC_SAMPLEUS. Its unit is microseconds.
This value represents a delay that is executed after the ADC channel is selected
and before the conversion is started.

DEFINE ADC_SAMPLEUS 50 ' Set sampling time in
microseconds

Its purpose is to eliminate crosstalk between ADC channels. The default value of
50uS is usually sufficient. If you are only reading a single channel, you may reduce
the value to enhance execution time. If you experience crosstalk, where voltage
changes on one channel affect the reading from another, try increasing the
ADC_SAMPLEUS value.

Here is an ADCIN example taken from a program intended for the 16F887:

DEFINE ADC_BITS 10 ' Set number of bits in result
DEFINE ADC_SAMPLEUS 50 ' Set sampling time in uS
'DEFINE ADC_CLOCK 3 ' This define is inoperative on

16F88x
adval VAR WORD ' Create adval to store result

ADCON0 = %11000000 ' Set ADC_CLOCK to RC (DEFINE

ACD_CLOCK inoperative on the
16F88x)

ADCON1 = %10000000 ' Right-Justify result in
ADRESH:ADRESL registers

ANSEL = %00000001 ' Set AN0-AN7 to digital with
the exception of AN0

ANSELH = %00000000 ' Set AN8 and higher channels to
digital operation

TRISA = %11111111 ' Set PORTA to all input

ADCIN 0, adval ' Read channel 0 to adval

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ARRAYREAD

118 www.melabs.com 2013-03-06

5.4 ARRAYREAD
ARRAYREAD ArrayVar, {Maxlength, Label,}[Item...]

Read one or more Items from byte array ArrayVar using SERIN2 modifiers.
ARRAYREAD can be used to scan a byte array for values and other strings and
move these elements to other variables.

An optional Maxlength and Label may be included to allow the program to limit the
number of characters read from the array so as not to read past its allocated length.
Maxlength must be less than 256, though longer arrays may be read using either
multiple ARRAYREADs or by leaving off this optional parameter. If the count
exceeds the Maxlength, the program will exit the ARRAYREAD command and jump
to Label.

An assortment of string-parsing modifiers is available for use within the item list of
this command. These modifiers are capable of extracting data from input strings to
various variable types:

Input Modifiers for Parsing Strings
Modifier Operation
DEC{1..10} Receive decimal digits
BIN{1..32} Receive binary digits
HEX{1..8} Receive upper case hexadecimal

digits
SKIP n Skip n received characters
STR ArrayVar\n{\c} Receive string of n characters

optionally ended in character c
WAIT () Wait for sequence of characters
WAITSTR ArrayVar{\n} Wait for character string

See section 2.10 for details on string-parsing modifiers.

ARRAYREAD is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

' Get first 2 bytes from array
ARRAYREAD A,[B0,B1]

' Skip 2 chars and grab a 4 digit decimal number
ARRAYREAD A,[SKIP 2,DEC4 W0]

' Find "x" in array A and then read a string
ARRAYREAD A,20,tlabel,[WAIT("x"),STR ar\10]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ARRAYWRITE

2013-03-06 www.melabs.com 119

5.5 ARRAYWRITE
ARRAYWRITE ArrayVar, {Maxlength, Label,}[Item...]

Write one or more Items to byte array ArrayVar using SEROUT2 modifiers.
ARRAYWRITE allows the writing of formatted data to a byte array which can then
be output by other compiler commands, such as I2CWRITE, to write to a serial
LCD, for example.

An optional Maxlength and Label may be included to allow the program to limit the
number of characters written to the array so as not to exceed its allocated length.
Maxlength must be less than 256, though longer arrays may be written using either
multiple ARRAYWRITEs or by leaving off this optional parameter. If the count
exceeds the Maxlength, the program will exit the ARRAYWRITE command and
jump to Label.

An assortment of string-formatting modifiers is available for use within the item list
of this command. These modifiers can be used to format string output that includes
numeric values converted from variables:

Output Modifiers for Formatting Strings
Modifier Operation
{I}{S}DEC{1..10} Send decimal digits
{I}{S}BIN{1..32} Send binary digits
{I}{S}HEX{1..8} Send hexadecimal digits
REP char\count Send character c repeated n

times
STR ArrayVar{\count} Send string of n characters

See section 2.11 for details on string-formatting modifiers.

ARRAYWRITE is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

' Send the ASCII value of B0 followed by a period
' and 2 digit ASCII value of B1
ARRAYWRITE A,[DEC B0,".",DEC2 B1]

' Send "B0 =" followed by the binary value of B0
ARRAYWRITE A,20,tlabel,["B0=",IBIN8 B0]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ASM..ENDASM

120 www.melabs.com 2013-03-06

5.6 ASM..ENDASM
ASM
 ;Assembly Language Code
ENDASM

The ASM and ENDASM instructions tells PBP that the code between these two
lines is in assembly language and should not be interpreted as PICBASIC PRO
statements. You can use these two instructions to mix assembly language code
with BASIC statements.

The maximum size for an assembler text section is 8K characters. This is the
maximum size for the actual source, including comments, not the generated code.
If the text block is larger than this, you must break it into multiple ASM..ENDASM
sections or simply include it in a separate file.

ASM resets the bank-selection in RAM to 0. You must ensure that the bank-select
is reset to 0 before ENDASM, if the assembly language code has altered it.

ENDASM must not appear in a comment in the assembly language section of the
program. As the compiler cannot discern what is happening in the assembly
section, an ENDASM anywhere in an ASM section will cause the compiler to revert
to BASIC parsing.

See section 7.1. In-Line Assembly Language for more information.

ASM
bsf PORTA, 0 ; Set bit 0 on PORTA
bcf PORTB, 0 ; Clear bit 0 on PORTB

ENDASM

Related Commands:

@
CALL

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

BRANCH

2013-03-06 www.melabs.com 121

5.7 BRANCH
BRANCH Index,[Label{,Label...}]

BRANCH is a legacy command retained for backward compatibility. Replacement
with ON GOTO is recommended.

BRANCH causes the program to jump to a different location based on a variable
index.

Index selects one of a list of Labels. Execution resumes at the indexed Label. For
example, if Index is zero, the program jumps to the first Label specified in the list, if
Index is one, the program jumps to the second Label, and so on. If Index is greater
than or equal to the number of Labels, no action is taken and execution continues
with the statement following the BRANCH. Up to 255 (256 for PIC18) Labels may
be used in a BRANCH.

For 12- and 14-bit core and PIC17 devices, Label must be in the same code page
as the BRANCH instruction. If you cannot be sure they will be in the same code
page (if you receive a "crossing code page boundary" warning), use BRANCHL
instead.

For PIC18 devices, the Label must be within 1K of the BRANCH instruction as it
uses a relative jump. If the Label is out of this range, use BRANCHL.

BRANCH B4,[dog,cat,fish]
' Same as:
' If B4=0 Then dog (goto dog)
' If B4=1 Then cat (goto cat)
' If B4=2 Then fish (goto fish)

Related Commands:

ON GOTO
ON GOSUB
BRANCHL

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

BRANCHL

122 www.melabs.com 2013-03-06

5.8 BRANCHL
BRANCHL Index,[Label{,Label...}]

BRANCHL is a legacy command retained for backward compatibility. Replacement
with ON GOTO is recommended.

BRANCHL (BRANCH long) works very similarly to BRANCH in that it causes the
program to jump to a different location based on a variable index. The main
difference is that it can jump to a Label that is in a different code page than the
BRANCHL instruction for 12- and 14-bit core and PIC17 devices, or further away
than 1K for PIC18 devices. It also generates code that is about twice the size as
code generated by the BRANCH instruction. If you are sure the labels are in the
same page as the BRANCH instruction or if the microcontroller does not have more
than one code page, using BRANCH instead of BRANCHL will minimize memory
usage. BRANCHL is a different syntax of ON GOTO.

Index selects one of a list of Labels. Execution resumes at the indexed Label. For
example, if Index is zero, the program jumps to the first Label specified in the list, if
Index is one, the program jumps to the second Label, and so on. If Index is greater
than or equal to the number of Labels, no action is taken and execution continues
with the statement following the BRANCHL. Up to 127 (1024 for PIC18) Labels
may be used in a BRANCHL.

BRANCHL B4,[dog,cat,fish]
' Same as:
' If B4=0 Then dog (goto dog)
' If B4=1 Then cat (goto cat)
' If B4=2 Then fish (goto fish)

Related Commands:

ON GOTO
ON GOSUB
BRANCH

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

BUTTON

2013-03-06 www.melabs.com 123

5.9 BUTTON
BUTTON Pin, Down, Delay, Rate, BVar, Action, Label

Read Pin and optionally perform debounce and auto-repeat. Pin is automatically
made an input. Pin may be a constant, 0-15, or a variable that contains a number 0-
15 (e.g. B0) or a pin name (e.g. PORTA.0).

Down State of pin when button is pressed (0..1).

Delay Cycle count before auto-repeat starts (0..255). If 0, no debounce or auto-
repeat is performed. If 255, debounce, but no auto-repeat, is performed.

Rate Auto-repeat rate (0..255).

BVar Byte-sized variable used internally for delay/repeat countdown. It must be
initialized to 0 prior to use and not used elsewhere in the program.

Action State of button to act on (0 if not pressed, 1 if pressed). Label Execution
resumes at this label if Action is true.

' Goto notpressed if button not pressed on Pin2
BUTTON PORTB.2,0,100,10,B2,0,notpressed

BUTTON needs to be used within a loop for auto-repeat to work properly.

BUTTON accomplishes debounce by delaying program execution for a period of
milliseconds to wait for the contacts to settle down. The default debounce delay is
10ms. To change the debounce to another value, use DEFINE:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

BUTTON

124 www.melabs.com 2013-03-06

' Set button debounce delay to 50ms
DEFINE BUTTON_PAUSE 50

Be sure that BUTTON_PAUSE is all in upper case. The maximum delay for 12-bit
core devices is 65ms.

Button is a complex command. If auto-repeat and debounce is not required, it is
easier to simply read the state of the pin in an IF..THEN:

If PORTB.2 = 1 Then notpressed

The example program on the following page uses BUTTON to monitor three
switches and toggles the state of a separate LED for each switch. Each switch is
equipped with delayed auto-repeat that works independently of the other two
switches. This example is written for the PIC16F887.

In the example, the BUTTON commands are written in this form:

BUTTON button1, 0, 40, 5, B1, 0, chk2

Decoding the parameters in order, the function of this command is:

• monitor the button1 pin, which…
• goes to a zero state when the button is pressed
• delay 40 loops before auto-repeat
• auto-repeat every 5 loops while pressed
• use the B1 variable to track loops
• act when the button is not pressed
• action is to jump to the chk2 label

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

BUTTON

2013-03-06 www.melabs.com 125

button1 VAR PORTB.4
button2 VAR PORTB.5
button3 VAR PORTB.6

LED1 VAR PORTB.0
LED2 VAR PORTB.1
LED3 VAR PORTB.2

B1 VAR BYTE ' Working buffer 1 for button command
B2 VAR BYTE ' Working buffer 2 for button command
B3 VAR BYTE ' Working buffer 3 for button command

 ANSEL = %00000000 ' Make AN0-AN7 digital
 ANSELH= %00000000 ' Make AN8-AN13 digital

 CLEAR ' Clear buffers
 PORTB = 0 ' LEDs off

 TRISB = %11110000 ' Set portb 0-3 outputs, 4-7 inputs
 OPTION_REG.7 = 0 ' Enable PORTB pull-ups

chk1:
 PAUSE 25 ' Pause once for each loop

 ' Check Button 1 (Skip to 2 if Not Pressed)
 BUTTON button1, 0, 40, 5, B1, 0, chk2
 TOGGLE LED1 ' Toggle LED if pressed

chk2:
 ' Check Button 2 (Skip to 3 if Not Pressed)
 BUTTON button2, 0, 40, 5, B2, 0, chk3
 TOGGLE LED2 ' Toggle LED if pressed

chk3:
 ' Check Button 3 (Skip to 1 if Not Pressed)
 BUTTON button3, 0, 40, 5, B3, 0, chk1
 TOGGLE LED3 ' Toggle LED if pressed
 GoTo chk1 ' Do it forever

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

CALL

126 www.melabs.com 2013-03-06

5.10 CALL
CALL Label

Execute the assembly language subroutine named _Label.

GOSUB is normally used to execute a PICBASIC PRO subroutine. The main
difference between GOSUB and CALL is that with CALL, Label's existence is not
checked until assembly time. A Label in an assembly language section can be
accessed using CALL that is otherwise inaccessible to PBP. The Assembly Label
should be preceded by an underscore (_).

See section 7.1 In-Line Assembly Language and section 7.5 Hardware Stack for
more information.

CALL pass ' Execute assembly language
subroutine named _pass

Related Commands:

@
ASM..ENDASM

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

CLEAR

2013-03-06 www.melabs.com 127

5.11 CLEAR
CLEAR

CLEAR writes zeros to all the RAM locations in each bank. This intention is to
initialize all declared variables with a value of zero.

When a PIC MCU is powered up, the RAM memory may read random data values.
PBP does not automatically clear these values. CLEAR is a coding shortcut to
accomplish a global initialization when needed, but it is expensive in terms of
execution time. Rather than using CLEAR, consider initializing each variable
individually, as needed.

CLEAR does not affect registers (SFRs) in the PIC MCU.

CLEAR does not zero bank 0 registers on 12-bit core devices.

CLEAR ' Clear all variables to 0

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

CLEARWDT

128 www.melabs.com 2013-03-06

5.12 CLEARWDT
CLEARWDT

Clear the Watchdog Timer.

The watchdog timer, when enabled, will reset the microcontroller after a specified
amount of time if it is ignored by the executing program code. This functions as a
safeguard against "lock-ups" by automatically resetting the device if the program
stops running. By default, PBP automatically clears and restarts the watchdog
timer periodically so that the watchdog reset never happens.

The CLEARWDT command will manually clear the watchdog timer.

CLEARWDT ' Clear Watchdog Timer

A DEFINE can be used to that instructs PBP not to clear the watchdog
automatically. This will allow you to manually handle the watchdog with
CLEARWDT commands in critical sections of your program. It can also save a bit
of code space if you plan to disable the watchdog entirely.

DEFINE NO_CLRWDT 1 ' Don't insert CLRWDTs

The Watchdog Timer is used in conjunction with the SLEEP and NAP instructions
to wake the PIC MCU after a certain period of time.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

 COUNT

2013-03-06 www.melabs.com 129

5.13 COUNT
COUNT Pin, Period, Var

Count the number of pulses that occur on Pin during the Period and stores the
result in Var. Pin is automatically made an input. Pin may be a constant, 0-15, or a
variable that contains a number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

The resolution of Period is in milliseconds. It tracks the oscillator frequency based
on the DEFINEd OSC.

COUNT checks the state of Pin in a tight loop and counts the low to high
transitions. With a 4MHz oscillator it checks the pin state every 20us. With a
20MHz oscillator it checks the pin state every 4us. From this, it can be determined
that the highest frequency of pulses that can be counted is 25KHz with a 4MHz
oscillator and 125KHz with a 20MHz oscillator, if the frequency has a 50% duty
cycle (the high time is the same as the low time).

' Count # of pulses on Pin1 in 100 milliseconds
COUNT PORTB.1,100,W1

' Determine frequency on a pin
COUNT PORTA.2, 1000, W1 ' Count for 1 second
Serout PORTB.0,N2400,[W1]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DATA

130 www.melabs.com 2013-03-06

5.14 DATA
{Label} DATA {@Location,}Constant{,Constant...}

Store constants in on-chip non-volatile EEPROM when the device is first
programmed. If the optional Location value is omitted, the first DATA statement
starts storing at address 0 and subsequent statements store at the following
locations. If the Location value is specified, it denotes the starting location where
these values are stored. An optional Label (not followed by a colon) can be
assigned to the starting EEPROM address for later reference by the program.

Constant can be a numeric constant or a string constant. Only the least significant
byte of numeric values are stored unless the WORD or LONG (PBPL only) modifier
is used. Strings are stored as consecutive bytes of ASCII values. No length or
terminator is automatically added.

DATA only works with microcontrollers with on-chip EEPROM (Data Space). It will
not work on devices with on-chip I2C interfaced serial EEPROM like the
PIC12CE67x and PIC16CE62x parts. Since EEPROM is non-volatile memory, the
data will remain intact even if the power is turned off.

The data is stored in the EEPROM space only once at the time the microcontroller
is programmed, not each time the program is run. WRITE can be used to set the
values of the on-chip EEPROM at runtime. READ is used to retrieve these stored
DATA values at runtime.

' Store 10, 20 and 30 starting at location 4
DATA @4,10,20,30

' Assign a label to a word at the next location
dlabel DATA word $1234 ' Stores $34, $12

' Assign a label to a long at the next location
label DATA long $12345678 ' Stores $78, $56, $34,$12 (PBPL

only)
' Skip 4 locations and store 10 zeros
DATA (4),0(10)

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEBUG

2013-03-06 www.melabs.com 131

5.15 DEBUG
DEBUG Item{,Item...}

Send one or more Items on a predefined pin at a predefined baud rate in standard
asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is
automatically made an output.

An assortment of string-formatting modifiers is available for use within the item list
of this command. These modifiers can be used to format string output that includes
numeric values converted from variables:

Output Modifiers for Formatting Strings
Modifier Operation
{I}{S}DEC{1..10} Send decimal digits
{I}{S}BIN{1..32} Send binary digits
{I}{S}HEX{1..8} Send hexadecimal digits
REP char\count Send character c repeated n

times
STR ArrayVar{\count} Send string of n characters

 See section 2.11 for details on string-formatting modifiers.

DEBUG is one of several built-in asynchronous serial functions. It is the smallest
and fastest of the software generated serial routines. It can be used to send
debugging information (variables, program position markers, etc.) to a terminal
program like Hyperterm. It can also be used anytime serial output is desired on a
fixed pin at a fixed baud rate.

The serial pin and baud rate are specified using DEFINEs:

' Set Debug pin port
DEFINE DEBUG_REG PORTB

' Set Debug pin bit
DEFINE DEBUG_BIT 0

' Set Debug baud rate
DEFINE DEBUG_BAUD 2400

' Set Debug mode: 0 = true, 1 = inverted
DEFINE DEBUG_MODE 1

DEBUG assumes a 4MHz oscillator when generating its bit timing. To maintain the
proper baud rate timing with other oscillator values, be sure to DEFINE the OSC
setting to any different oscillator value.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEBUG

132 www.melabs.com 2013-03-06

In some cases, the transmission rates of DEBUG instructions may present
characters too quickly to the receiving device. A DEFINE adds character pacing to
the serial output transmissions. This allows additional time between the characters
as they are transmitted. The character pacing DEFINE allows a delay of up to
65,535 microseconds (65.535 milliseconds) between each character transmitted.

For example, to pause 1 millisecond between the transmission of each character:

DEFINE DEBUG_PACING 1000

While single-chip RS-232 level converters are common and inexpensive, thanks to
current RS-232 implementation and the excellent I/O specifications of the PIC
MCU, most applications may not require level converters. Rather, inverted TTL
(DEBUG_MODE 1) may be used. A current limiting resistor is suggested (RS-232
is suppose to be short-tolerant).

DEBUG "B0=",DEC B0,10 ' Send the text "B0=" followed
by the decimal value of B0 and a
linefeed out serially

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEBUGIN

2013-03-06 www.melabs.com 133

5.16 DEBUGIN
DEBUGIN {Timeout, Label,}[Item{,Item...}]

Receive one or more Items on a predefined pin at a predefined baud rate in
standard asynchronous format using 8 data bits, no parity and 1 stop bit (8N1).
The pin is automatically made an input.

An optional Timeout and Label may be included to allow the program to continue if
a character is not received within a certain amount of time. Timeout is specified in 1
millisecond units. If the serial input pin stays idle during the Timeout time, the
program will exit the DEBUGIN command and jump to Label.

An assortment of string-parsing modifiers is available for use within the item list of
this command. These modifiers are capable of extracting data from input strings to
various variable types:

Input Modifiers for Parsing Strings
Modifier Operation
DEC{1..10} Receive decimal digits
BIN{1..32} Receive binary digits
HEX{1..8} Receive upper case hexadecimal

digits
SKIP n Skip n received characters
STR ArrayVar\n{\c} Receive string of n characters

optionally ended in character c
WAIT () Wait for sequence of characters
WAITSTR ArrayVar{\n} Wait for character string

See section 2.10 for details on string-parsing modifiers.

DEBUGIN is one of several built-in asynchronous serial functions. It is the smallest
and fastest of the software generated serial routines. It can be used to receive
debugging information from a terminal program like Hyperterm. It can also be used
anytime serial input is desired on a fixed pin at a fixed baud rate.

The serial pin and baud rate are specified using DEFINEs:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEBUGIN

134 www.melabs.com 2013-03-06

' Set Debugin pin port
DEFINE DEBUGIN_REG PORTB

' Set Debugin pin bit
DEFINE DEBUGIN_BIT 0

' Set Debugin baud rate (same as Debug baud)
DEFINE DEBUG_BAUD 2400

' Set Debugin mode: 0 = true, 1 = inverted
DEFINE DEBUGIN_MODE 1

If any of these DEFINEs are not included in a program, the DEBUGIN port, pin or
mode is set to the same values as they are for DEBUG. The DEBUGIN baud rate is
always the same as DEBUG's. It cannot be DEFINEd differently.

DEBUGIN assumes a 4MHz oscillator when generating its bit timing. To maintain
the proper baud rate timing with other oscillator values, be sure to DEFINE the
OSC setting to any different oscillator value.

While single-chip RS-232 level converters are common and inexpensive, thanks to
current RS-232 implementation and the excellent I/O specifications of the PIC
MCU, most applications may not require level converters. Rather, inverted TTL
(DEBUGIN_MODE 1) may be used. A current limiting resistor is necessary to
dissipate the higher and sometimes negative RS-232 voltage.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEBUGIN

2013-03-06 www.melabs.com 135

' Wait until the character "A" is received serially and put
next character into B0

DEBUGIN [WAIT("A"),B0]
' Skip 2 chars and grab a 4 digit decimal number
DEBUGIN [SKIP 2,DEC4 B0]
' Wait for value with timeout
DEBUGIN 100, timesup, [B0]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DO..LOOP

136 www.melabs.com 2013-03-06

5.17 DO..LOOP
DO {UNTIL Condition} {WHILE Condition}

Statement...
LOOP {UNTIL Condition} {WHILE Condition}

Repeatedly execute Statements in a loop. An optional UNTIL or WHILE may be
added to check a Condition. Tests using the UNTIL keyword will cause the loop to
terminate when the condition becomes true. Tests using the WHILE keyword will
cause the loop to terminate when the condition becomes false.

If the test condition is written on the line with the DO keyword (at the top of the
loop), the test will be performed before the loop executes. If the test condition
results in termination of the loop, execution will continue at the line after the LOOP
keyword, even if the code within the loop has not executed.

If the test condition is written on the line with the LOOP keyword (at the bottom of
the loop), the test will first be performed after the loop executes. The code within
the loop will always execute at least one time, even if the test condition calls for
termination of the loop on its first iteration.

The EXIT command, when executed within a DO loop, will force the loop to
terminate.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DO..LOOP

2013-03-06 www.melabs.com 137

DO
PWM PORTC.2,127,100

LOOP

i = 1
DO
SEROUT 0,N2400,["No:",#i,13,10]

i = i + 1
LOOP UNTIL i > 10

i = 1
DO WHILE i <= 10

SEROUT 0,N2400,["No:",#i,13,10]
i = i + 1

LOOP

i = 1
DO

SEROUT 0,N2400,["No:",#i,13,10]
i = i + 1
IF PORTB.0 = 0 THEN EXIT

LOOP WHILE i <= 10

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DTMFOUT

138 www.melabs.com 2013-03-06

5.18 DTMFOUT
DTMFOUT Pin,{Onms, Offms,}[Tone{,Tone...}]

Produce DTMF touch Tone sequence on Pin. Pin is automatically made an output.
Pin may be a constant, 0-15, or a variable that contains a number 0-15 (e.g. B0) or
a pin name (e.g. PORTA.0).

Onms is the number of milliseconds to sound each tone and Offms is the number of
milliseconds to pause between each tone. If they are not specified, Onms defaults
to 200ms and Offms defaults to 50ms.

Tones are numbered 0-15. Tones 0-9 are the same as on a telephone keypad.
Tone 10 is the * key, Tone 11 is the # key and Tones 12-15 correspond to the
extended keys A-D.

DTMFOUT uses FREQOUT to generate the dual tones. FREQOUT generates
tones using a form of pulse width modulation. The raw data coming out of the pin
looks pretty scary. Some kind of filter is usually necessary to smooth the signal to a
sine wave and get rid of some of the harmonics that are generated:

DTMFOUT works best with a 20MHz or 40MHz oscillator. It can also work with a
10MHz or 8MHz oscillator and even at 4MHz, although it will start to get very hard
to filter and be of fairly low amplitude. Any other frequency may not be used with
DTMFOUT.

DTMFOUT is not supported on PIC MCUs that use the 12-bit instruction set due to
RAM and stack constraints.

' Send DTMF tones for 212 on Pin1
DTMFOUT PORTB.1,[2,1,2]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

EEPROM

2013-03-06 www.melabs.com 139

5.19 EEPROM
EEPROM {Location,}[Constant{,Constant...}]

This command is included for compatibility with other languages. The DATA
command is recommended instead.

Store constants in on-chip EEPROM. If the optional Location value is omitted, the
first EEPROM statement starts storing at address 0 and subsequent statements
store at the following locations. If the Location value is specified, it denotes the
starting location where these values are stored.

Constant can be a numeric constant or a string constant. Only the least significant
byte of numeric values are stored. Strings are stored as consecutive bytes of
ASCII values. No length or terminator is automatically added.

EEPROM only works with microcontrollers with on-chip EEPROM (Data Space). It
will not work on devices with on-chip I2C interfaced serial EEPROM like the
PIC12CE67x and PIC16CE62x parts. Since EEPROM is non-volatile memory, the
data will remain intact even if the power is turned off.

The data is stored in the EEPROM space only once at the time the microcontroller
is programmed, not each time the program is run. WRITE can be used to set the
values of the on-chip EEPROM at runtime. READ is used to retrieve these stored
DATA values at runtime.

' Store 10, 20 and 30 starting at location 4
EEPROM 4,[10,20,30]

http://www.melabs.com/

PICBASIC PRO™ Compiler Reference Manual

END

140 www.melabs.com 2013-03-06

5.20 END
END

Stop program execution and enter low power mode. All of the I/O pins remain in
their current state. END works by executing a Sleep instruction continuously in a
loop.

Care should be taken not to execute END while hardware peripherals such as a
serial USART could be operating. END will suspend operation of such peripherals.
If you need to suspend program operation without shutting down the peripherals,
use STOP instead.

END

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ERASECODE

2013-03-06 www.melabs.com 141

5.21 ERASECODE
ERASECODE Block

Some flash PIC MCUs, like the PIC18F series, require a portion of the code space
to be erased before it can be rewritten with WRITECODE. On these devices, an
erase is performed a block at a time. An erase block may be 32 words (64 bytes)
or another size, depending on the device. This size is usually larger than the write
block size. See the Microchip data sheet for information on the size of the erase
block for the particular PIC MCU you are using.

The first location of the block to be erased is specified by Block. For PIC18F
devices, Block is a byte address rather than a word address. Be careful not to
specify a Block that contains program code.

Note that the Block address used in the ERASECODE command must coincide
with a block starting address as defined by Microchip. If you use an address that is
not a starting address, you may get unexpected results. If a PIC18 target device
has an erase block size of 64 bytes, then the Block address should be an exact
multiple of 64 (0, 64, 128, … 3200, 3264, etc.).

For 12-bit instruction set devices that support flash data memory, like the
PIC12F519 and PIC16F526, ERASECODE must be used to erase the rows of
memory before it can be rewritten using WRITE.

If only a portion of a block is to be changed, for example only the first byte in the
block, the entire block must be read before it is erased and all of the data rewritten,
including the new data and the original data that needs to be preserved.

Flash program writes must be enabled in the configuration for the PIC MCU at
device programming time for ERASECODE to be able to erase.

Using this instruction on devices that do not support block erase may cause a
compilation error.

ERASECODE $1000 ' Erase code block starting at
location $1000

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

EXIT

142 www.melabs.com 2013-03-06

5.22 EXIT
EXIT

EXIT jumps to the line after the end of the currently-executing loop structure and
continues program execution from there. This allows a loop to be terminated
(aborted) with EXIT, overriding the loop's conditional requirement. As none of the
loop structures in PBP use the stack, there are no stack concerns when using
EXIT.

Types of loops that can be terminated using EXIT are:

DO..LOOP
FOR..NEXT
WHILE..WEND
REPEAT..UNTIL

FOR x = 0 TO 255
 IF (x = 27) THEN EXIT
NEXT x

DO
 IF (PORTB.0 = 0) THEN EXIT
LOOP

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

FOR..NEXT

2013-03-06 www.melabs.com 143

5.23 FOR..NEXT
FOR Count = Start TO End {STEP {-} Inc}{Body}NEXT {Count}

The FOR..NEXT loop allows programs to execute a number of statements (the
Body) some number of times using a variable as a counter. Due to its complexity
and versatility, FOR..NEXT is best described step by step:

1) The value of Start is assigned to the index variable, Count. Count can be a
variable of any type.

2) The Body is executed. The Body is optional and can be omitted (perhaps for a
delay loop).

3) The value of Inc is added to (or subtracted from if "-" is specified) Count. If no
STEP clause is defined, Count is incremented by one.

4) If Count has not passed End or overflowed the variable type, execution returns to
Step 2.

If the loop needs to Count to more than 255, a word- or long-sized (PBPL only)
variable must be used.

FOR i = 1 TO 10 ' Count from 1 to 10
SEROUT 0,N2400,[#i," "] ' Send each number toPin0

serially
NEXT i ' Go back to and do next count
SEROUT 0,N2400,[10] ' Send a linefeed
FOR B2 = 20 TO 10 STEP -2 ' Count from 20 to 10 by 2

SEROUT 0,N2400,[#B2," "] ' Send each number to Pin0
serially

NEXT B2 ' Go back to and do next count
SEROUT 0,N2400,[10] ' Send a linefeed

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

FREQOUT

144 www.melabs.com 2013-03-06

5.24 FREQOUT
FREQOUT Pin, Onms, Frequency1{,Frequency2}

Produce the Frequency(s) on Pin for Onms milliseconds. Pin is automatically made
an output. Pin may be a constant, 0-15, or a variable that contains a number 0-15
(e.g. B0) or a pin name (e.g. PORTA.0).

One or two different frequencies from 0 to 32767 Hertz may be produced at a time.

FREQOUT generates tones using a form of pulse width modulation. The raw data
coming out of the pin looks pretty scary. Some kind of filter is usually necessary to
smooth the signal to a sine wave and get rid of some of the harmonics that are
generated:

FREQOUT works best with a 20MHz or 40MHz oscillator. It can also work with a
10MHz or 8MHz oscillator and even at 4MHz, although it will start to get very hard
to filter and be of fairly low amplitude. Any other frequency will cause FREQOUT to
generate a frequency that is a ratio of the actual oscillator used and 20MHz.

FREQOUT is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

' Send 1KHz tone on Pin1 for 2 seconds
FREQOUT PORTB.1,2000,1000

' Send 350Hz / 440Hz (Dial Tone) for 2 seconds
FREQOUT PORTB.1,2000,350,440

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

GOSUB

2013-03-06 www.melabs.com 145

5.25 GOSUB
GOSUB Label

Jump to the subroutine at Label saving its return address on the stack. Unlike
GOTO, when a RETURN statement is reached after executing a GOSUB,
execution resumes with the statement following that last executed GOSUB
statement.

An unlimited number of subroutines may be used in a program. Subroutines may
also be nested. In other words, it is possible for a subroutine to GOSUB to another
subroutine. Such subroutine nesting must be restricted to no more than four nested
levels for 12- and 14-bit core devices, 12 levels for 14-bit enhanced core and PIC17
parts and 27 levels for PIC18 parts. Interrupts cause additional locations to be
used on the stack , reducing the number of possible nested GOSUBs.

See section 7.5 Hardware Stack for more information.

GOSUB flash 'Execute subroutine named flash

flash:

HIGH led 'Turn on LED
PAUSE 500 'Pause 500mS
LOW led 'Turn off LED

RETURN 'Go back to main routine that
called us

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

GOTO

146 www.melabs.com 2013-03-06

5.26 GOTO
GOTO Label

Program execution continues with the statements at Label.

GOTO send ' Jump to statement labeled send
...

send:

SEROUT 0,N2400,["Hi"] ' Send "Hi" out Pin0 serially

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HIGH

2013-03-06 www.melabs.com 147

5.27 HIGH
HIGH Pin

Make the specified Pin high. Pin is automatically made an output. Pin may be a
constant, 0-15, or a variable that contains a number 0-15 (e.g. B0) or a pin name
(e.g. PORTA.0).

HIGH 0 ' Make Pin0 an output and set it
high (~5 volts)

HIGH PORTA.0 ' Make PORTA, pin 0 an output
and set it high (~5 volts)

led Var PORTB.0 ' Define LED pin
HIGH led ' Make LED pin an output and set

it high (~5 volts)

Alternatively, if the pin is already an output, a much quicker and shorter way (from a
generated code standpoint) to set it high would be:

PORTB.0 = 1 ' Set PORTB pin 0 high

Since this command automatically sets the data-direction of the pin it acts on, the
Pin parameter should only be a PORT or GPIO register (or an alias to a PORT or
GPIO register). If the command is directed to act upon a LAT output or a bit within
a variable or SFR, it will attempt to set a data-direction register that doesn't exist.
The result may be unexpected behavior since a bit is changed in a seemingly
random memory location. This can be very difficult to debug.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HPWM

148 www.melabs.com 2013-03-06

5.28 HPWM
HPWM Channel, Dutycycle, Frequency

Output a pulse width modulated pulse train using PWM hardware available on
some PIC MCUs. It can run continuously in the background while the program is
executing other instructions.

Channel specifies which hardware PWM channel to use. Some devices have
between 1 and 5 PWM Channels that can be used with HPWM. The Microchip data
sheet for the particular device shows the fixed hardware pin for each Channel. For
example, for a PIC16F877a, Channel 1 is CCP1 which is pin PORTC.2. Channel 2
is CCP2 which is pin PORTC.1.

Some devices can be configured to select different pins for some PWM output
channels. The following DEFINEs allow you to specify alternative output pins so
that the HPWM command will function correctly. (The available pin selection is
specified in the Microchip datasheet for the target device. These DEFINEs only
serve to let PBP know how you have configured the microcontroller. Additional
register settings will be required to actually relocate the pins.)

DEFINE CCP1_REG PORTC 'Channel-1 port
DEFINE CCP1_BIT 2 'Channel-1 bit
DEFINE CCP2_REG PORTC 'Channel-2 port
DEFINE CCP2_BIT 1 'Channel-2 bit
DEFINE CCP3_REG PORTG 'Channel-3 port
DEFINE CCP3_BIT 0 'Channel-3 bit
DEFINE CCP4_REG PORTG 'Channel-4 port
DEFINE CCP4_BIT 3 'Channel-4 bit
DEFINE CCP5_REG PORTG 'Channel-5 port
DEFINE CCP5_BIT 4 'Channel-5 bit

Dutycycle specifies the on/off (high/low) ratio of the signal. It ranges from 0 to 255,
where 0 is off (low all the time) and 255 is on (high) all the time. A value of 127
gives a 50% duty cycle (square wave).

Frequency is the desired frequency of the PWM signal. On devices with 2
channels, the Frequency must be the same on both channels. Not all frequencies
are available at all oscillator settings. For the non-long versions of PBP (PBP and
PBPW), the highest frequency at any oscillator speed is 32767Hz.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HPWM

2013-03-06 www.melabs.com 149

The lowest usable HPWM Frequency at each oscillator setting is shown in the
following table.

OSC 14-bit Enhanced 14-bit PIC18

4MHz 245Hz 62Hz 245Hz
8MHz 489Hz 123Hz 489Hz

10MHz 611Hz 153Hz 611Hz

12MHz 733Hz 184Hz 733Hz

16MHz 977Hz 245Hz 977Hz

20MHz 1221Hz 306Hz 1221Hz

24MHz na 366Hz 1465Hz

25MHz na 382Hz 1527Hz

32MHz na 489Hz 1953Hz

33MHz na na 2015Hz

40MHz na na 2441Hz

48MHz na na 2929Hz

64MHz na na 3905Hz

After an HPWM command, the CCP control register is left in PWM mode. If the
CCP pin is to be used as a normal I/O pin after an HPWM command, the CCP
control register will need to be set to PWM off. See the Microchip data sheet for the
particular device for more information.

Many devices allow a selection of Timer resource for some or all of the PWM
channels. The HPWM command will automatically determine the preset Timer
selection upon execution. Note that PWM channels that share a single timer may
not operate at independent output frequencies. While duty-cycle settings are
always independent from one channel to the next, independent frequency settings
require independent timer resources.

HPWM 1,127,1000 ' Send a 50% duty cycle PWM
signal at 1kHz

HPWM 1,64,2000 ' Send a 25% duty cycle PWM
signal at 2kHz

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HSERIN

150 www.melabs.com 2013-03-06

5.29 HSERIN
HSERIN {ParityLabel,} {Timeout, Label,}[Item{,...}]

Receive one or more Items from the hardware serial port on devices that support
asynchronous serial communications in hardware.

HSERIN is one of several built-in asynchronous serial functions. It can only be
used with devices that have a hardware USART. See the device data sheet for
information on the serial input pin and other parameters. The serial parameters and
baud rate are specified using DEFINEs:

' Set receive register to receiver enabled
DEFINE HSER_RCSTA 90h
' Set transmit register to transmitter enabled
DEFINE HSER_TXSTA 20h
' Set baud rate
DEFINE HSER_BAUD 2400

' Set SPBRG, SPBRGH directly
' (better to set HSER_BAUD instead)
DEFINE HSER_SPBRG 25
DEFINE HSER_SPBRGH 0

HSER_RCSTA, HSER_TXSTA, HSER_SPBRG, and HSER_SPBRGH simply set
each respective PIC MCU register, RCSTA, TXSTA, SPBRG and SPBRGH to the
hexadecimal value DEFINEd, once, at the beginning of the program. See the
Microchip data sheet for the device for more information on each of these registers.

The TXSTA register BRGH bit (bit 2) controls the high speed mode for the baud
rate generator. Certain baud rates at certain oscillator speeds require this bit to be
set to operate properly. To do this, set HSER_TXSTA to 24h instead of 20h. All
baud rates at all oscillator speeds may not be supported by the device. See the
Microchip data sheet for the hardware serial port baud rate tables and additional
information.

HSERIN assumes a 4MHz oscillator when calculating the baud rate. To maintain
the proper baud rate timing with other oscillator values, be sure to DEFINE the
OSC setting to the new oscillator value.

An optional Timeout and Label may be included to allow the program to continue if
a character is not received within a certain amount of time.

Timeout is specified in 1 millisecond units. If no character is received during the
Timeout time, the program will exit the HSERIN command and jump to Label.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HSERIN

2013-03-06 www.melabs.com 151

The serial data format defaults to 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1
(7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) can be
enabled using one of the following DEFINEs:

' Use only if even parity desired
DEFINE HSER_EVEN 1
' Use only if odd parity desired
DEFINE HSER_ODD 1
' Use 8 bits + parity
DEFINE HSER_BITS 9

The parity setting, along with all of the other HSER DEFINEs, affect both HSERIN
and HSEROUT.

An optional ParityLabel may be included in the statement. The program will
continue at this location if a character with a parity error is received. It should only
be used if parity is enabled using one of the preceding DEFINEs.

As the hardware serial port only has a 2 byte input buffer, it can easily overflow if
characters are not read from it often enough. When this happens, the USART
stops accepting new characters and needs to be reset. This overflow error can be
reset by toggling the CREN bit in the RCSTA register. A DEFINE can be used to
automatically clear this error. However, you will not know that an error has occurred
and characters may have been lost.

DEFINE HSER_CLROERR 1 ' Clear overrun error upon
execution of every HSERIN
command

To manually clear an overrun error:

RCSTA.4 = 0
RCSTA.4 = 1

The HSERIN command does not offer a parameter to select the idle state of the
input signal. By default, the USART peripheral will interpret the input signal in
TRUE mode (idle state being high at the input pin). A few devices offer a
selectable polarity via register settings. For most devices, though, any signal
inversion must be accomplished with external circuity.

On devices with 2 hardware serial ports, HSERIN will only use the first port. The
second port may read using HSERIN2.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HSERIN

152 www.melabs.com 2013-03-06

An assortment of string-parsing modifiers is available for use within the item list of
this command. These modifiers are capable of extracting data from input strings to
various variable types:

Input Modifiers for Parsing Strings
Modifier Operation
DEC{1..10} Receive decimal digits
BIN{1..32} Receive binary digits
HEX{1..8} Receive upper case hexadecimal

digits
SKIP n Skip n received characters
STR ArrayVar\n{\c} Receive string of n characters

optionally ended in character c
WAIT () Wait for sequence of characters
WAITSTR ArrayVar{\n} Wait for character string

See section 2.10 for details on string-parsing modifiers.

HSERIN [B0,DEC W1]
HSERIN 100, timesup, [B0]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HSERIN2

2013-03-06 www.melabs.com 153

5.30 HSERIN2
HSERIN2 {ParityLabel,}{Timeout, Label,}[Item{,...}]

Receive one or more Items from the second hardware serial port on devices that
support asynchronous serial communications in hardware.

HSERIN2 works the same as HSERIN with the exception that is uses the second
hardware serial port on devices that have 2 ports such as the PIC18F8720 It can
only be used with devices that have 2 hardware USARTs. See the device data
sheet for information on the serial output pin and other parameters and the above
section on HSERIN for more command details. The serial parameters and baud
rate are specified using DEFINEs:

' Set receive register to receiver enabled
DEFINE HSER2_RCSTA 90h
' Set transmit register to transmitter enabled
DEFINE HSER2_TXSTA 20h
' Set baud rate
DEFINE HSER2_BAUD 2400
' Set SPBRG2, SPBRGH2 directly
' (better to set HSER2_BAUD instead)
DEFINE HSER2_SPBRG 25
DEFINE HSER2_SPBRGH 0
' Use only if even parity desired
DEFINE HSER2_EVEN 1
' Use only if odd parity desired
DEFINE HSER2_ODD 1
' Use 8 bits + parity
DEFINE HSER2_BITS 9
' Automatically clear overflow errors
DEFINE HSER2_CLROERR 1

HSERIN2 [B0,DEC W1]
HSERIN2 100, timesup, [B0]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HSEROUT

154 www.melabs.com 2013-03-06

5.31 HSEROUT
HSEROUT [Item{,Item...}]

Send one or more Items to the hardware serial port on devices that support
asynchronous serial communications in hardware.

HSEROUT is one of several built-in asynchronous serial functions. It can only be
used with devices that have a hardware USART. See the device data sheet for
information on the serial output pin and other parameters. The serial parameters
and baud rate are specified using DEFINEs:

' Set receive register to receiver enabled
DEFINE HSER_RCSTA 90h
' Set transmit register to transmitter enabled
DEFINE HSER_TXSTA 20h
' Set baud rate
DEFINE HSER_BAUD 2400
' Set SPBRG, SPBRGH directly
' (better to set HSER_BAUD instead)
DEFINE HSER_SPBRG 25
DEFINE HSER_SPBRGH 0

HSER_RCSTA, HSER_TXSTA, HSER_SPBRG, and HSER_SPBRGH simply set
each respective PIC MCU register, RCSTA, TXSTA, SPBRG and SPBRGH to the
hexadecimal value DEFINEd, once, at the beginning of the program. See the
Microchip data sheet for the device for more information on each of these registers.

The TXSTA register BRGH bit (bit 2) controls the high speed mode for the baud
rate generator. Certain baud rates at certain oscillator speeds require this bit to be
set to operate properly. To do this, set HSER_TXSTA to 24h instead of 20h. All
baud rates at all oscillator speeds may not be supported by the device. See the
Microchip data sheet for the hardware serial port baud rate tables and additional
information.

HSEROUT assumes a 4MHz oscillator when calculating the baud rate. To maintain
the proper baud rate timing with other oscillator values, be sure to DEFINE the
OSC setting to the new oscillator value.

The serial data format defaults to 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1
(7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) can be
enabled using one of the following DEFINEs:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HSEROUT

2013-03-06 www.melabs.com 155

' Use only if even parity desired
DEFINE HSER_EVEN 1
' Use only if odd parity desired
DEFINE HSER_ODD 1
' Use 8 bits + parity
DEFINE HSER_BITS 9

The parity setting, along with all of the other HSER DEFINEs, affect both HSERIN
and HSEROUT.

Since the serial transmission is done in hardware, it is not possible to set the levels
to an inverted state to eliminate an RS-232 driver. Therefore a suitable driver
should be used with HSEROUT.

On devices with 2 hardware serial ports, HSEROUT will only use the first port. The
second port may be accessed using HSEROUT2.

An assortment of string-formatting modifiers is available for use within the item list
of this command. These modifiers can be used to format string output that includes
numeric values converted from variables:

Output Modifiers for Formatting Strings
Modifier Operation
{I}{S}DEC{1..10} Send decimal digits
{I}{S}BIN{1..32} Send binary digits
{I}{S}HEX{1..8} Send hexadecimal digits
REP char\count Send character c repeated n

times
STR ArrayVar{\count} Send string of n characters

See section 2.11 for details on string-formatting modifiers.

HSEROUT [DEC B0,10] ' Send the decimal value of B0
followed by a line feed out the
hardware USART

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

HSEROUT2

156 www.melabs.com 2013-03-06

5.32 HSEROUT2
HSEROUT2 [Item{,Item...}]

Send one or more Items to the second hardware serial port on devices that support
asynchronous serial communications in hardware.

HSEROUT2 works the same as HSEROUT with the exception that is uses the
second hardware serial port on devices that have 2 ports such as the PIC18F8720.
It can only be used with devices that have 2 hardware USARTs. See the device
data sheet for information on the serial output pin and other parameters and the
above section on HSEROUT for more command details. The serial parameters
and baud rate are specified using DEFINEs:

' Set receive register to receiver enabled
DEFINE HSER2_RCSTA 90h
' Set transmit register to transmitter enabled
DEFINE HSER2_TXSTA 20h
' Set baud rate
DEFINE HSER2_BAUD 2400
' Set SPBRG2, SPBRGH2 directly
' (better to set HSER2_BAUD instead)
DEFINE HSER2_SPBRG 25
DEFINE HSER2_SPBRGH 0
' Use only if even parity desired
DEFINE HSER2_EVEN 1
' Use only if odd parity desired
DEFINE HSER2_ODD 1
' Use 8 bits + parity
DEFINE HSER2_BITS 9

HSEROUT2 [DEC B0,10] ' Send the decimal value of B0

followed by a linefeed out the
hardware USART

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

I2CREAD

2013-03-06 www.melabs.com 157

5.33 I2CREAD
I2CREAD DataPin, ClockPin, Control,{Address,}[Var{,Var...}]{,Label}

Send Control and optional Address bytes out the ClockPin and DataPin and store
the byte(s) received into Var. ClockPin and DataPin may be a constant, 0-15, or a
variable that contains a number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

I2CREAD is a software-based command and does not require that the target device
have I2C capability. The ClockPin and DataPin parameters may be set to any
digital I/O pins, and may be different in different commands within the same
program.

I2CREAD and I2CWRITE can be used to read and write data to a serial EEPROM
with a 2-wire I2C interface such as the Microchip 24LC01B and similar devices.
This allows data to be stored in external non-volatile memory so that it can be
maintained even after the power is turned off. These commands operate in the I2C
master mode and may also be used to talk to other devices with an I2C interface
like temperature sensors and A/D converters.

For 12-bit core PIC MCUs only, the I2C clock and data pins are fixed at compile
time by DEFINEs. They still must be specified in the I2CREAD statements, though
this information is ignored by the compiler.

DEFINE I2C_SCL PORTA,1 ' For 12-bit core only
DEFINE I2C_SDA PORTA,0 ' For 12-bit core only

The upper 7 bits of the Control byte contain the control code along with chip select
or additional address information, depending on the particular device. The low
order bit is an internal flag indicating whether it is a read or write command and
should be kept clear.

This format for the Control byte is different than the format used by the original
PICBASIC Compiler. Be sure to use this format with PBP I2C operations.

For example, when communicating with a 24LC01B, the control code is %1010 and
the chip selects are unused so the Control byte would be %10100000 or $A0.
Formats of Control bytes for some of the different parts follows:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

I2CREAD

158 www.melabs.com 2013-03-06

Device Capacity Control Address
size

24LC01 B 128 bytes %1010xxx0 1 byte

24LC02 B 256 bytes %1010xxx0 1 byte

24LC04 B 512 bytes %1010xxb0 1 byte

24LC08 B 1K bytes %1010xbb0 1 byte

24LC16 B 2K bytes %1010bbb0 1 byte

24LC32 B 4K bytes %1010ddd0 2 bytes

24LC65 8K bytes %1010ddd0 2 bytes
bbb = block select (high order address) bits
ddd = device select bits
xxx = don't care

The Address size sent (byte or word) is determined by the size of the variable that
is used. If a byte-sized variable is used for the Address, an 8-bit address is sent. If
a word-sized variable is used, a 16-bit address is sent. Be sure to use the proper
sized variable for the device you wish to communicate with. Constants should not
be used for the Address as the size can vary dependent on the size of the constant.
Also, expressions should not be used as they can cause an improper Address size
to be sent.

Once Control and/or Address has been sent to the device, the data specified
between the square brackets is read from the device. If a word-or long-sized Var is
specified, the bytes are read and stored into the Var highest byte first, followed by
the lower byte(s). This order is different than the way variables are normally stored,
low byte first.

A modifier, STR, may be included before the variable name. This can load an
entire array (string) at once. If STR is specified, the following variable must be the
name of a word or byte array, followed by a backslash (\) and a count:

a Var Byte[8]
addr Var Byte

addr = 0
I2CREAD PORTC.4,PORTC.3,$a0,addr,[STR a\8]

If a word- or long-sized array is specified, the bytes that comprise each element are
read lowest byte first. This is the opposite of how simple words and longs are read
and is consistent with the way the compiler normally stores word- and long-sized
variables.

If the optional Label is included, this label will be jumped to if an acknowledge is not
received from the I2C device. The I2C instructions can be used to access the on-
chip serial EEPROM on the PIC12CE and PIC16CE devices. Simply specify the

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

I2CREAD

2013-03-06 www.melabs.com 159

pin names for the appropriate internal lines as part of the I2C command and place
the following DEFINE at the top of the program:

DEFINE I2C_INTERNAL 1

For the PIC12CE67x devices, the data line is GPIO.6 and the clock line is GPIO.7.
For the PIC16CE62x devices, the data line is EEINTF.1 and the clock line is
EEINTF.2. See the Microchip data sheets for these devices for more information.

The timing of the I2C instructions is set so that standard speed devices(100kHz) will
be accessible at clock speeds up to 8MHz. Fast mode devices (400kHz) may be
used up to 20MHz. If it is desired to access a standard speed device at above
8MHz, the following DEFINE should be added to the program:

DEFINE I2C_SLOW 1

Because of memory and stack constraints, this DEFINE for 12-bit core PIC MCUs
does not do anything. Low-speed (100 kHz) I2C devices may be used up to 4MHz.
Above 4MHz, high-speed (400kHz) devices should be used.

Transfer on the I2C bus can be paused by the receiving device by its holding the
clock line low (not supported on 12-bit core PIC MCUs). To enable this the
following DEFINE should be added to the program:

DEFINE I2C_HOLD 1

To make the I2C clock line bipolar instead of open-collector the following DEFINE
may be added to the program:

DEFINE I2C_SCLOUT 1

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

I2CREAD

160 www.melabs.com 2013-03-06

The I2C clock and data lines should be pulled up to Vcc with a 4.7K resistor per the
following schematic as they are both run in a bidirectional open-collector manner.

Circuit example for common memory device:

See the Microchip "Non-Volatile Memory Products Data Book" for more information
on these and other devices that may be used with the I2CREAD and I2CWRITE
commands.

addr VAR BYTE
cont CON %10100000

addr = 17 ' Set address to 17

' Read data at address 17 into B2
I2CREAD PORTA.0,PORTA.1,cont,addr,[B2]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

I2CWRITE

2013-03-06 www.melabs.com 161

5.34 I2CWRITE
I2CWRITE DataPin, ClockPin, Control, {Address,}[Value{,Value...}]{,Label}

I2CWRITE sends Control and optional Address out the I2C ClockPin and DataPin
followed by Value. ClockPin and DataPin may be a constant, 0-15, or a variable
that contains a number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

I2CWRITE is a software-based command and does not require that the target
device have I2C capability. The ClockPin and DataPin parameters may be set to
any digital I/O pins, and may be different in different commands within the same
program.

For 12-bit core PIC MCUs only, the I2C clock and data pins are fixed at compile
time by DEFINEs. They still must be specified in the I2CWRITE statements,
though this information is ignored by the compiler.

DEFINE I2C_SCL PORTA,1 ' For 12-bit core only
DEFINE I2C_SDA PORTA,0 ' For 12-bit core only

The Address size sent (byte or word) is determined by the size of the variable that
is used. If a byte-sized variable is used for the Address, an 8-bit address is sent. If
a word-sized variable is used, a 16-bit address is sent. Be sure to use the proper
sized variable for the device you wish to communicate with. Constants should not
be used for the Address as the size can vary dependent on the size of the constant.
Also, expressions should not be used as they can cause an improper Address size
to be sent.

When writing to a serial EEPROM, it is necessary to wait 10ms (device dependent -
check its data sheet) for the write to complete before attempting communication
with the device again. If a subsequent I2CREAD or I2CWRITE is attempted before
the write is complete, the access will be ignored.

While a single I2CWRITE statement may be used to write multiple bytes at once,
doing so may violate the above write timing requirement for serial EEPROMs.
Some serial EEPROMS let you write multiple bytes into a single page before
necessitating the wait. Check the data sheet for the specific device you are using
for these details. The multiple byte write feature may also be useful with I2C
devices other than serial EEPROMs that don't have to wait between writes.

If a word- or long-sized Value is specified, the bytes are sent highest byte first,
followed by the lower byte(s). This order is different than the way variables are
normally stored, low byte first.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

I2CWRITE

162 www.melabs.com 2013-03-06

A modifier, STR, may be included before the variable name. This can be used to
write an entire array (string) at once and take advantage of a serial EEPROM's
page mode. The data must fit into a single SEEPROM page. The page size is
dependent on the particular SEEPROM device. If STR is specified, the following
variable must be the name of a word or byte array, followed by a backslash (\) and
a count:

a Var Byte[8]
addr Var Byte
addr = 0
I2CWRITE PORTC.4,PORTC.3,$a0,addr,[STR a\8]

If a word- or long-sized array is specified, the bytes that comprise each element are
written lowest byte first. This is the opposite of how simple words and longs are
written and is consistent with the way the compiler normally stores word- and long-
sized variables.

If the optional Label is included, this label will be jumped to if an acknowledge is not
received from the I2C device. The I2C instructions can be used to access the on-
chip serial EEPROM on the PIC12CE and PIC16CE devices. Simply specify the
pin names for the appropriate internal lines as part of the I2C command and place
the following DEFINE at the top of the program:

DEFINE I2C_INTERNAL 1

For the PIC12CE67x devices, the data line is GPIO.6 and the clock line is GPIO.7.
For the PIC16CE62x devices, the data line is EEINTF.1 and the clock line is
EEINTF.2. See the Microchip data sheets for these devices for more information.

The timing of the I2C instructions is set so that standard speed devices(100kHz) will
be accessible at clock speeds up to 8MHz. Fast mode devices (400kHz) may be
used up to 20MHz. If it is desired to access a standard speed device at above
8MHz, the following DEFINE should be added to the program:

DEFINE I2C_SLOW 1

Because of memory and stack constraints, this DEFINE for 12-bit core PIC MCUs
does not do anything. Low-speed (100 kHz) I2C devices may be used up to 4MHz.
Above 4MHz, high-speed (400kHz) devices should be used.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

I2CWRITE

2013-03-06 www.melabs.com 163

Transfer on the I2C bus can be paused by the receiving device by its holding the
clock line low (not supported on 12-bit core PIC MCUs). To enable this the
following DEFINE should be added to the program:

DEFINE I2C_HOLD 1

To make the I2C clock line bipolar instead of open-collector the following DEFINE
may be added to the program:

DEFINE I2C_SCLOUT 1

See the I2CREAD command above for the rest of the story.

addr Var Byte
cont Con %10100000

addr = 17 ' Set address to 17

' Send the byte 6 to address 17
I2CWRITE PORTA.0,PORTA.1,cont,addr,[6]

Pause 10 ' Wait 10ms for write to

completeaddr = 1 ' Set address to 1

' Send the byte in B2 to address 1
I2CWRITE PORTA.0,PORTA.1,cont,addr,[B2]

Pause 10 ' Wait 10ms for write to complete

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

IF..THEN

164 www.melabs.com 2013-03-06

5.35 IF..THEN
IF Comp {AND/OR Comp...} THEN Label

IF Comp {AND/OR Comp...} THEN Statement...

IF Comp {AND/OR Comp...} THEN

Statement...
 {ELSEIF Comp {AND/OR Comp...} THEN

Statement...}
 {ELSE

Statement...}
ENDIF

Performs one or more comparisons. Each Comp term can relate a variable to a
constant or other variable and includes one of the comparison operators listed
previously.

IF..THEN evaluates the comparison terms for true or false. If the condition
evaluates to true, the operation after the THEN is executed. If it evaluates to false,
the operation after the THEN is not executed. Comparisons that evaluate to 0 are
considered false. Any other value is considered true.

For PBPW, all values in comparisons are treated as unsigned. IF..THEN cannot be
used to check if a number is less than 0. Using PBPL, signed comparisons,
including less than zero, may be performed.

It is essential to use parenthesis to specify the order in which the operations should
be tested. Otherwise, operator precedence will determine it for you and the result
may not be as expected.

IF..THEN can operate as a single-line or code, or as a multi-line block structure.

If written as a single line, a label may be written after the THEN keyword. The IF
statement will jump to the label if the condition evaluates as true:

IF PORTB.0 = 0 THEN pushd ' If the condition is true, jump
to label pushd

Single line mode can also be used to execute a command statement, or multiple,
concatenated command statements.

IF PORTB.0 = 0 THEN HIGH PORTC.0

In the multi-line form, IF..THEN can conditionally execute a group of Statements
following the THEN. This is the traditional form found in many programming
languages. This form requires that the THEN keyword be the last word on the line.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

IF..THEN

2013-03-06 www.melabs.com 165

The Statements must be placed on separate lines and followed by an optional
ELSEIF or ELSE and required ENDIF to complete the structure.

Only one block of code will be executed, even if multiple ELSEIF conditions
evaluate as true. The first condition that evaluates as true will cause subsequent
conditionals to be ignored.

IF B0 = 20 THEN
led = 1

ELSEIF B0 = 40 THEN
led = 1

ELSE
led = 0

ENDIF

More Examples:

IF B0 <> 10 THEN
B0 = B0 + 1
B1 = B1 - 1

ENDIF

IF B0 = 20 THEN

led = 1
ELSE

led = 0
ENDIF

IF B0 >= 40 THEN old

IF PORTB.0 THEN itson

IF (B0 = 10) AND (B1 = 20) THEN mainloop

IF B0 <> 10 THEN B0 = B0 + 1: B1 = B1 - 1

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

INPUT

166 www.melabs.com 2013-03-06

5.36 INPUT
INPUT Pin

Makes the specified Pin an input. Pin may be a constant, 0-15, or a variable that
contains a number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

INPUT 0 ' Make Pin0 an input
INPUT PORTA.0 ' Make PORTA, pin 0 an input

Alternatively, the pin may be set to an input using direct register access:

TRISB.0 = 1 ' Set PORTB, pin 0 to an input

All of the pins on a port may be set to inputs by setting the entire TRIS register at
once:

TRISB = %11111111 ' Set all of PORTB to inputs

INPUT is most useful for setting a pin to input using only the pin's alias. It is not
necessary to know the actual port.pin designation in this case:

user_in VAR PORTB.0 ' Alias user input pin
INPUT user_in ' Set to input

Since this command automatically sets the data-direction of the pin it acts on, the
Pin parameter should only be a PORT or GPIO register (or an alias to a PORT or
GPIO register). If the command is directed to act upon a LAT output or a bit within
a variable or SFR, it will attempt to set a data-direction register that doesn't exist.
The result may be unexpected behavior since a bit is changed in a seemingly
random memory location. This can be very difficult to debug.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LCDIN

2013-03-06 www.melabs.com 167

5.37 LCDIN
LCDIN {Address,}[Var{,Var...}]

Read LCD RAM at Address and store data to Var.

LCDs have RAM onboard that is used for character memory. Most LCDs have
more RAM available that is necessary for the displayable area. This RAM can be
written using the LCDOUT instruction. The LCDIN instruction allows this RAM to be
read.

CG (character generator) RAM runs from address $40 to $7f. Display data RAM
starts at address $80. See the data sheet for the specific LCD for these addresses
and functions.

It is necessary to connect the LCD read/write line to a PIC MCU pin so that it may
be controlled to select either a read (LCDIN) or write (LCDOUT) operation. Two
DEFINEs control the pin address:

DEFINE LCD_RWREG PORTE ' LCD read/write port
DEFINE LCD_RWBIT 2 ' LCD read/write pin bit

See LCDOUT for information on connecting an LCD to a PIC MCU.

LCDIN [B0]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LCDOUT

168 www.melabs.com 2013-03-06

5.38 LCDOUT
LCDOUT Item{,Item...}

Display Items on an intelligent Liquid Crystal Display. PBP supports LCD modules
with a Hitachi 44780 controller or equivalent. These LCDs usually have a 14- or
16-pin single- or dual-row header at one edge.

An assortment of string-formatting modifiers is available for use within the item list
of this command. These modifiers can be used to format string output that includes
numeric values converted from variables:

Output Modifiers for Formatting Strings
Modifier Operation
{I}{S}DEC{1..10} Send decimal digits
{I}{S}BIN{1..32} Send binary digits
{I}{S}HEX{1..8} Send hexadecimal digits
REP char\count Send character c repeated n

times
STR ArrayVar{\count} Send string of n characters

See section 2.11 for details on string-formatting modifiers.

A program should wait for up to half a second before sending the first command to
an LCD. It can take quite a while for an LCD to start up.

The LCD is initialized the first time any character or command is sent to it using
LCDOUT. If it is powered down and then powered back up for some reason during
operation, an internal flag can be reset to tell the program to reinitialize it the next
time it uses LCDOUT:

FLAGS = 0

Commands are sent to the LCD by sending a $FE followed by the command.
Some useful commands are listed in the following table.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LCDOUT

2013-03-06 www.melabs.com 169

Command Operation

$FE, $01 Clear display
$FE, $02 Return home
$FE, $0C Cursor off
$FE, $0E Underline cursor on
$FE, $0F Blinking cursor on
$FE, $10 Move cursor left one position
$FE, $14 Move cursor right one position
$FE, $80 Move cursor to beginning of first

line
$FE, $C0 Move cursor to beginning of second

line
$FE, $94 Move cursor to beginning of third

line
$FE, $D4 Move cursor to beginning of fourth

line

Note that there are commands to move the cursor to the beginning of the different
lines of a multi-line display. For most LCDs, the displayed characters and lines are
not consecutive in display memory - there can be a break in between locations. For
most 16x2 displays, the first line starts at $80 and the second line starts at $C0.
The command:

LCDOUT $FE, $80 + 4

sets the display to start writing characters at the forth position of the first line. 16x1
displays are usually formatted as 8x2 displays with a break between the memory
locations for the first and second 8 characters. 4line displays also have a mixed up
memory map, as shown in the table above.

See the data sheet for the particular LCD device for the character memory locations
and additional commands..

LCDOUT $FE, 1, "Hello" ' Clear display and show "Hello"
LCDOUT $FE, $C0, "World" ' Jump to second line and show

"World"
LCDOUT B0,#B1 ' Display B0 and decimal ASCII

value of B1

The LCD may be connected to the PIC MCU using either a 4-bit bus or an 8-bit
bus. If an 8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used,
the top 4 LCD data bits must be connected to either the bottom 4 or top 4 bits of
one port. Enable and Register Select may be connected to any port pin. R/W may
be tied to ground if the LCDIN command is not used.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LCDOUT

170 www.melabs.com 2013-03-06

PBP assumes the LCD is connected to specific pins unless told otherwise using
DEFINEs. It assumes the LCD will be used with a 4-bit bus with data lines DB4 -
DB7 connected to PIC MCU PORTA.0 - PORTA.3, Register Select to PORTA.4
and Enable to PORTB.3.

It is also preset to initialize the LCD to a 2 line display.

To change this setup, place one or more of the following DEFINEs, all in upper-
case, at the top of your PICBASIC PRO program:

' Set LCD Data port
DEFINE LCD_DREG PORTA
' Set starting Data bit (0 or 4) if 4-bit bus
DEFINE LCD_DBIT 0
' Set LCD Register Select port
DEFINE LCD_RSREG PORTA
' Set LCD Register Select bit
DEFINE LCD_RSBIT 4
' Set LCD Enable port
DEFINE LCD_EREG PORTB
' Set LCD Enable bit
DEFINE LCD_EBIT 3
' Set LCD bus size (4 or 8 bits)
DEFINE LCD_BITS 4
' Set number of lines on LCD
DEFINE LCD_LINES 2
' Set command delay time in us
DEFINE LCD_COMMANDUS 1500
' Set data delay time in us
DEFINE LCD_DATAUS 44

The settings above represent the default values. If you omit the DEFINEs (not
recommended) these values will be used.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LCDOUT

2013-03-06 www.melabs.com 171

The following schematic shows one way to connect an LCD to a PIC MCU, using
the default DEFINE settings (from the previous page) for the PIC16F1827:

Note that most of the pins used to connect the LCD in the above diagram have the
additional function of analog conversion inputs on the 16F1827 (AN0-AN4, and
AN9). For proper operation of the LCDOUT command, these pins must be
configured as digital I/O with following register settings in the program code:

ANSELA = %00000000 ' Set PORTA pins to digital I/O
ANSELB = %00000000 ' Set PORTB pins to digital I/O

The need to configure the pins for digital I/O is common to most PIC
microcontrollers, but the actual register settings will differ from device to device.
Consult the datasheet for the specific device for the correct settings.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LCDOUT

172 www.melabs.com 2013-03-06

The following schematic demonstrates how the LCD would be connected with 8
data lines instead of 4. See the code example on the following page for the
DEFINEs and register settings that will make this connection scheme work on the
PIC16F887.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LCDOUT

2013-03-06 www.melabs.com 173

Program code example to configure the LCD connection shown on the preceding
page:

' Configure LCDOUT for 8-bit connection on a PIC16F887

DEFINE LCD_DREG PORTD ' PORTD is LCD data port
DEFINE LCD_DBIT 0 ' PORTD.0 is the data LSB
DEFINE LCD_RSREG PORTE ' RS is connected to PORTE.0
DEFINE LCD_RSBIT 0
DEFINE LCD_EREG PORTE ' E is connected to PORTE.1
DEFINE LCD_EBIT 1
DEFINE LCD_BITS 8 ' 8 lines of data are used
DEFINE LCD_LINES 2 ' It is a 2-line display
DEFINE LCD_COMMANDUS 1500 ' Use 1500uS command delay
DEFINE LCD_DATAUS 44 ' Use 44uS data delay

' Initialize ANSEL to allow use of PORTE pins for LCD
ANSEL = %00000000 ' Configure AN0-AN7 as digital

I/O

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LET

174 www.melabs.com 2013-03-06

5.39 {LET}
{LET} Var = Value

Assign a Value to a Variable. The Value may be a constant, another variable or the
result of an expression. Refer to the previous section on operators for more
information. The keyword LET itself is optional.

LET B0 = B1 * B2 + B3 ‘Calculate value for B0

B0 = B1 * B2 + B3 ‘Identical result

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LOOKDOWN

2013-03-06 www.melabs.com 175

5.40 LOOKDOWN
LOOKDOWN Search,[Constant{,Constant...}],Var

The LOOKDOWN statement searches a list of 8-bit Constant values for the
presence of the Search value. If found, the list-location of the matching constant is
stored in Var. Thus, if the value is found first in the list, Var is set to zero. If second
in the list, Var is set to one. And so on. If not found, Var remains unchanged.

The constant list can be a mixture of numeric and string constants. Each character
in a string is treated as a separate constant with the character's ASCII value. Array
variables with a variable index may not be used in LOOKDOWN although array
variables with a constant index are allowed. Up to 255 (256 for PIC18) constants
are allowed in the list.

SERIN 1,N2400,B0 ' Get hexadecimal character from
Pin1 serially

' Convert hexadecimal character in B0 to decimal value B1
LOOKDOWN B0,["0123456789ABCDEF"],B1

SEROUT 0,N2400,[#B1] ' Send decimal value to Pin0

serially

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LOOKDOWN2

176 www.melabs.com 2013-03-06

5.41 LOOKDOWN2
LOOKDOWN2 Search,{Test}[Value{,Value...}],Var

The LOOKDOWN2 statement searches a list of Values for the presence of the
Search value. If found, the index of the matching constant is stored in Var. Thus, if
the value is found first in the list, Var is set to zero. If second in the list, Var is set to
one. And so on. If not found, Var remains unchanged.

The optional parameter Test can be used to perform a test for other than equal to
("=") while searching the list. For example, the list could be searched for the first
instance where the Search parameter is greater than the Value by using ">" as the
Test parameter. If Test is left out, "=" is assumed.

The Value list can be a mixture of 8- and 16-bit (and 32-bit for PBPL) numeric and
string constants and variables. Each character in a string is treated as a separate
constant equal to the character's ASCII value. Expressions may not be used in the
Value list, although they may be used as the Search value.

Array variables with a variable index may not be used in LOOKDOWN2 although
array variables with a constant index are allowed. Up to 85 (256 for PIC18) values
are allowed in the list.

LOOKDOWN2 generates code that is about 3 times larger than LOOKDOWN. If the
search list is made up only of 8-bit constants and strings, use LOOKDOWN.

LOOKDOWN2 W0,[512,W1,1024],B0
LOOKDOWN2 W0,>[1000,100,10],B0

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LOOKUP

2013-03-06 www.melabs.com 177

5.42 LOOKUP
LOOKUP Index,[Constant{,Constant...}],Var

The LOOKUP statement can be used to retrieve values from a table of 8bit
constants. If Index is zero, Var is set to the value of the first Constant. If Index is
one, Var is set to the value of the second Constant. And so on. If Index is greater
than or equal to the number of entries in the constant list, Var remains unchanged.

The constant list can be a mixture of numeric and string constants. Each character
in a string is treated as a separate constant equal to the character's ASCII value.
Array variables with a variable index may not be used in LOOKUP although array
variables with a constant index are allowed. Up to 255 (1024 for PIC18) constants
are allowed in the list.

For B0 = 0 To 5 ' Count from 0 to 5
LOOKUP B0,["Hello!"],B1 ' Get character number B0 from

string to variableB1
SEROUT 0,N2400,[B1] ' Send character in B1 to Pin0

serially
Next B0 ' Do next character

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LOOKUP2

178 www.melabs.com 2013-03-06

5.43 LOOKUP2
LOOKUP2 Index,[Value{,Value...}],Var

The LOOKUP2 statement can be used to retrieve entries from a table of Values. If
Index is zero, Var is set to the first Value. If Index is one, Var is set to the second
Value. And so on. If Index is greater than or equal to the number of entries in the
list, and Var remains unchanged.

The Value list can be a mixture of 8-bit and 16-bit (and 32-bit for PBPL) numeric
and string constants and variables. Each character in a string is treated as a
separate constant equal to the character's ASCII value. Expressions may not be
used in the Value list, although they may be used as the Index value.

Array variables with a variable index may not be used in LOOKUP2 although array
variables with a constant index are allowed. For most devices, up to 1024 values
are allowed in the list. The exceptions are devices using a 12-bit instruction set,
described as "Baseline Architecture", for which the limit is 85 values.

LOOKUP2 generates code that is about 3 times larger than LOOKUP. If the Value
list is made up of only 8-bit constants and strings, use LOOKUP.

LOOKUP2 B0,[256,512,1024],W1

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

LOW

2013-03-06 www.melabs.com 179

5.44 LOW
LOW Pin

Make the specified Pin low. Pin is automatically made an output. Pin may be a
constant, 0-15, or a variable that contains a number 0-15 (e.g. B0) or a pin name
(e.g. PORTA.0).

LOW 0 ' Make Pin0 an output and set it
low (0 volts)

LOW PORTA.0 ' Make PORTA, pin 0 an output
and set it low (0 volts)

led Var PORTB.0 ' Define LED pin
LOW led ' Make LED pin an output and set

it low (0 volts)

Alternatively, if the pin is already an output, a much quicker and shorter way (from a
generated code standpoint) to set it low would be:

PORTB.0 = 0 ' Set PORTB, pin 0 low

Since this command automatically sets the data-direction of the pin it acts on, the
Pin parameter should only be a PORT or GPIO register (or an alias to a PORT or
GPIO register). If the command is directed to act upon a LAT output or a bit within
a variable or SFR, it will attempt to set a data-direction register that doesn't exist.
The result may be unexpected behavior since a bit is changed in a seemingly
random memory location. This can be very difficult to debug.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

NAP

180 www.melabs.com 2013-03-06

5.45 NAP
NAP Period

Places the microcontroller into low power mode for a short period of time. During
this NAP, power consumption is reduced. To achieve minimum current draw it may
be necessary to turn off other peripherals on the device, such as the ADC, before
executing the NAP command. See the Microchip data sheet for the specific device
for information about these register settings.

Period Delay (Approx.)

 PIC12F, PIC16F PIC12F1, PIC16F1

0 18 mS 1 mS
1 36 mS 2 mS
2 72 mS 4 mS
3 144 mS 8 mS
4 288 mS 16 mS
5 576 mS 32 mS
6 1.152 Second 64 mS
7 2.304 Seconds 128 mS
8 256 mS
9 512 mS
10 1 Second
11 2 Seconds
12 4 Seconds
13 8 Seconds
14 16 Seconds
15 32 Seconds
16 64 Seconds
17 128 Seconds
18 256 Seconds

The Period is used to set the Watchdog timer prescaler for devices that have a
prescaler including the 12- and 14-bit core devices.

The PIC18 devices use a postscaler set at programming time to configure the
Watchdog timeout period. The compiler will disregard the Period set in the NAP
instruction for the 16bit core devices.

The listed Periods for the 12- and 14-bit core devices are only approximate
because the timing derived from the Watchdog Timer is R/C driven and can vary
greatly from chip to chip and over temperature.

NAP puts the processor to sleep for one Watchdog Timer period. If the Watchdog
Timer is not enabled, the processor will sleep forever or until an enabled interrupt or

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

NAP

2013-03-06 www.melabs.com 181

reset is received. For this reason, NAP is suitable for placing the device in low-
power mode indefinitely and waking the device with an interrupt.

For complete details on the workings of low-power modes and interrupts, you will
need to refer to the Microchip datasheet for the specific device that you are using.
In most PIC MCUs, only a reset or an enabled interrupt event will wake the part.

A reset, of course, will cause the program to restart from the beginning.

Interrupt behavior is dependent on the interrupt-control register settings. Upon
wake, a jump to an interrupt vector will occur if the global interrupt bit is enabled. If
the global interrupt bit is not enabled, program execution will resume on the line
after the NAP command.

NAP 7 ' Low power pause for about 2.3
seconds on a PIC16F887

NAP 11 ' Low power pause for about 2
seconds on a PIC16F1827

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ON GOSUB

182 www.melabs.com 2013-03-06

5.46 ON GOSUB
ON Index GOSUB Label{,Label...}

ON GOSUB causes the program to jump to a different subroutine based on a
variable index. Once the subroutine is complete and a RETURN is encountered,
the program continues execution at the line following the ON GOSUB.

Index selects one of a list of Labels. A subroutine call is made to the indexed
Label. For example, if Index is zero, the program does a GOSUB to the first Label
specified in the list, if Index is one, the program does a GOSUB to the second
Label, and so on. If Index is greater than or equal to the number of Labels, no
action is taken and execution continues with the statement following the ON
GOSUB. Up to 127 (1024 for PIC18) Labels may be used in a ON GOSUB.

An unlimited number of subroutines may be used in a program. Subroutines may
also be nested. In other words, it is possible for a subroutine to GOSUB to another
subroutine. Such subroutine nesting must be restricted to no more than four nested
levels for 14-bit core devices, 12 levels for 14-bit enhanced core and PIC17 parts
and 27 levels for PIC18 parts. Interrupts cause additional locations to be used on
the stack, reducing the number of possible nested GOSUBs. See the section on
interrupts later in the manual for more information.

ON GOSUB is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

ON B4 GOSUB dog, cat, fish
' Same as:
' IF B4=0 THEN GOSUB dog : Goto after
' IF B4=1 THEN GOSUB cat : Goto after
' IF B4=2 THEN GOSUB fish
'after:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ON GOTO

2013-03-06 www.melabs.com 183

5.47 ON GOTO
ON Index GOTO Label{,Label...}

ON GOTO causes the program to jump to a different location based on a variable
index. It can jump to a Label that is in a different code page than the ON GOTO
instruction for 12- and 14-bit core and PIC17 devices, or further away than 1K for
PIC18 devices. It generates code that is about twice the size as code generated by
the BRANCH instruction. If you are sure the labels are in the same page as the
BRANCH instruction or if the microcontroller does not have more than one code
page, using BRANCH instead of ON GOTO will minimize memory usage. ON
GOTO is a different syntax of BRANCHL.

Index selects one of a list of Labels. Execution resumes at the indexed Label. For
example, if Index is zero, the program jumps to the first Label specified in the list, if
Index is one, the program jumps to the second Label, and so on. If Index is greater
than or equal to the number of Labels, no action is taken and execution continues
with the statement following the ON GOTO. Up to 127 (1024 for PIC18) Labels
may be used in a ON GOTO.

ON B4 GOTO dog, cat, fish
' Same as:
' If B4=0 Then dog (goto dog)
' If B4=1 Then cat (goto cat)
' If B4=2 Then fish (goto fish)

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

OUTPUT

184 www.melabs.com 2013-03-06

5.48 OUTPUT
OUTPUT Pin

Make the specified Pin an output. Pin may be a constant, 0 - 15, or a variable that
contains a number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

OUTPUT 0 ' Make Pin0 an output
OUTPUT PORTA.0 ' Make PORTA, pin 0 an output

Alternatively, the pin may be set to an using direct register access:

TRISB.0 = 0 ' Set PORTB, pin 0 to an output

All of the pins on a port may be set to outputs by setting the entire TRIS register at
once:

TRISB = %00000000 ' Set all of PORTB to outputs

OUTPUT is most useful for setting a pin to output using only the pin's alias. It is not
necessary to know the actual port.pin designation in this case:

led VAR PORTB.0 ' Alias led pin
OUTPUT led ' Set to output

Since this command automatically sets the data-direction of the pin it acts on, the
Pin parameter should only be a PORT or GPIO register (or an alias to a PORT or
GPIO register). If the command is directed to act upon a LAT output or a bit within
a variable or SFR, it will attempt to set a data-direction register that doesn't exist.
The result may be unexpected behavior since a bit is changed in a seemingly
random memory location. This can be very difficult to debug.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

OWIN

2013-03-06 www.melabs.com 185

5.49 OWIN
OWIN Pin, Mode,[Item...]{,Label}

Optionally send a reset pulse to a one-wire device and then read one or more bits
or bytes of data from it, optionally ending with another reset pulse.

Pin may be a constant, 0 - 15, or a variable that contains a number 0 15 (e.g. B0) or
a pin name (e.g. PORTA.0).

Mode specifies whether a reset is sent before and/or after the operation and the
size of the data items, either bit or byte.

Some Mode examples would be: Mode of %000 (decimal 0) means no reset and
byte-sized data, Mode of %001 (decimal 1) means reset before data and byte-sized
data, Mode of %100 (decimal 4) means no reset and bit-sized data.

Item is one or more variables or modifiers separated by commas. The allowable
modifiers are STR for reading data into a byte array variable and SKIP for skipping
a number of input values.

The SKIP and STR modifiers are not supported for the 12-bit core PIC MCUs
because of RAM and stack size limits.

If a device is not present, OWIN can jump to an optional Label.

OWIN PORTC.0,%000,[STR temperature\2,SKIP 4,
count_remain, count_per_c]

This statement would receive bytes from a one-wire device on PORTC pin 0 with
no reset pulse being sent. It would receive 2 bytes and put them into the byte array
temperature, skip the next 4 bytes and then read the final 2 bytes into separate
variables.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

OWOUT

186 www.melabs.com 2013-03-06

5.50 OWOUT
OWOUT Pin, Mode,[Item...]{,Label}

Optionally send a reset pulse to a one-wire device and then writes one or more bits
or bytes of data to it, optionally ending with another reset pulse.

Pin may be a constant, 0 - 15, or a variable that contains a number 0 15 (e.g. B0) or
a pin name (e.g. PORTA.0).

Mode specifies whether a reset is sent before and/or after the operation and the
size of the data items, either bit or byte.

Mode bit number Effect

0 1 = send reset pulse before data
1 1 = send reset pulse after data

2 0 = byte-sized data, 1 = bit-sized
data

Some Mode examples would be: Mode of %000 (decimal 0) means no reset and
byte-sized data, Mode of %001 (decimal 1) means reset before data and byte-sized
data, Mode of %100 (decimal 4) means no reset and bit-sized data.

Item is one or more constants, variables or modifiers separated by commas. The
allowable modifiers are STR for sending data from a byte array variable and REP
for sending a number of repeated values.

The REP and STR modifiers are not supported for the 12-bit core PIC MCUs
because of RAM and stack size limits.

If a device is not present, OWOUT can jump to an optional Label.

OWOUT PORTC.0,%001,[$cc, $be]

This statement would send a reset pulse to a one-wire device on PORTC pin 0
followed by the bytes $cc and $be.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PAUSE

2013-03-06 www.melabs.com 187

5.51 PAUSE
PAUSE Period

Pause the program for Period milliseconds. Period is 16-bits using PBP and
PBPW, so delays can be up to 65,535 milliseconds (a little over a minute). Using
PBPL, Period is 32-bits. This will allow delays of over 49 days. Long values are
interpreted as unsigned. This may result in a longer pause than expected. If a long
variable is used and it could go negative, it should be limited to greater than or
equal to 0 using a function like MAX, for example.

Unlike the other delay functions (NAP and SLEEP), PAUSE doesn't put the
microcontroller into low power mode. Thus, PAUSE consumes more power but is
also much more accurate. It has the same accuracy as the system clock.

DEFINE OSC must be used in order for PBP to accurately calculate and generate
code for PAUSE. If no DEFINE OSC is placed in the program, PBP will assume
that the system clock will operate at 4MHz and calibrate the generated code
accordingly.

PAUSE 1000 ' Delay for 1 second

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PAUSEUS

188 www.melabs.com 2013-03-06

5.52 PAUSEUS
PAUSEUS Period

Pause the program for Period microseconds. Period is 16-bits, so delays can be up
to 65,535 microseconds. Unlike the other delay functions (NAP and SLEEP),
PAUSEUS doesn't put the microcontroller into low power mode. Thus, PAUSEUS
consumes more power but is also much more accurate.

Because PAUSEUS takes a minimum number of cycles to operate, depending on
the frequency of the oscillator, delays of less than a minimum number of
microseconds are not possible using PAUSEUS. To obtain shorter delays, use an
assembly language routine.

OSC Minimum delay Minimum delay PIC18

3 (3.58) 20us 20us**
4 24us 19us**
8 12us 9us**
10 8us 7us**
12 7us 5us**
16 5us 4us**
20 3us 3us**
24 3us 2us**
25,32,33 2us* 2us**
40,48,64 - 1us**

* PIC17 only. ** PIC18 only

DEFINE OSC must be used in order for PBP to accurately calculate and generate
code for PAUSEUS. If no DEFINE OSC is placed in the program, PBP will assume
that the system clock will operate at 4MHz and calibrate the generated code
accordingly.

PAUSEUS 1000 ' Delay for 1 millisecond

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PEEK

2013-03-06 www.melabs.com 189

5.53 PEEK
PEEK Address, Var

Read the microcontroller register at the specified Address and stores the result in
Var. Special PIC MCU features such as A/D converters and additional I/O ports
may be read using PEEK.

If Address is a constant, the contents of this register number are placed into Var. If
Address is the name of a special function register, e.g. PORTA, the contents of this
register will be placed into Var. If Address is a RAM location, the value of the RAM
location will first be read, then the contents of the register specified by that value
will be placed into Var.

However, all of the PIC MCU registers can be and should be accessed without
using PEEK and POKE. All of the PIC MCU registers are considered 8-bit
variables by PICBASIC PRO and may be used as you would any other byte-sized
variable. They can be read directly or used directly in equations.

B0 = PORTA ' Get current PORTA pin states to B0

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PEEKCODE

190 www.melabs.com 2013-03-06

5.54 PEEKCODE
PEEKCODE Address, Var

Read a value from the code space at the specified Address and store the result in
Var.

PEEKCODE can be used to read data stored in the code space of a PIC MCU. It
executes a call to the specified Address and places the returned value in Var. The
specified location should contain a retlw and the data value. POKECODE may be
used to store this value at the time the device is programmed.

PEEKCODE $3FF, OSCCAL ‘Get OSCCAL value for
PIC12C671/12CE673

PEEKCODE $7FF, OSCCAL ‘Get OSCCAL value for
PIC12C672/12CE674

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

POKE

2013-03-06 www.melabs.com 191

5.55 POKE
POKE Address, Value

Write Value to the microcontroller register at the specified Address. Special PIC
MCU features such as A/D converters and additional I/O ports may be written using
POKE.

If Address is a constant, Value is placed into this register number. If Address is the
name of a special function register, e.g. PORTA, Value will be placed into this
register. If Address is a RAM location, the contents of the RAM location will first be
read, then Value is placed into the register specified by those contents.

However, all of the PIC MCU registers can be and should be accessed without
using PEEK and POKE. All of the PIC MCU registers are considered 8-bit
variables by PICBASIC PRO and may be used as you would any other byte-sized
variable. They can be written directly or used directly in equations.

TRISA = 0 ' Set PORTA to all outputs
PORTA.0 = 1 ' Set PORTA bit 0 high

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

POKECODE

192 www.melabs.com 2013-03-06

5.56 POKECODE
POKECODE {@Address,}Value{,Value...}

Store Values to the code space at the current program address or optional
specified Address at the time the microcontroller is programmed.

Note that POKECODE is a specialized command intended for use in
circumstances under which standard methods won't serve. LOOKUP
and LOOKUP2 are usually a better choice for constructing lookup
tables in code space.

POKECODE can be used to generate tables in the code space of the PIC MCU. It
generates a return with the data in W. This data can be accessed using the
PEEKCODE instruction.

If the optional Address is not specified, data storage will be located immediately
after the preceding program instruction written.

To avoid interruption of program flow, POKECODE should be the last line of your
program. It should be placed after the END or STOP command.

POKECODE 10, 20, 30 ' Store 10, 20, and 30in code
space

Generates:
retlw 10
retlw 20
retlw 30

POKECODE @$7ff, $94 ' Set OSCCAL value for

PIC12C672/12CE674
Generates:

org 7ffh
retlw 94h

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

POT

2013-03-06 www.melabs.com 193

5.57 POT
POT Pin, Scale, Var

Reads a potentiometer (or some other resistive device) on Pin. Pin may be a
constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g. B0) or a pin name
(e.g. PORTA.0).

Note that POT originated as a means to read an analog input on
PIC MCUs that lacked analog conversion capability. These days,
analog conversion is considered a standard feature on modern
PIC MCUs. If the PIC is equipped with analog conversion, it is
highly recommended that ADCIN be used instead of POT.

The resistance is measured by timing the discharge of a capacitor through the
resistor (typically 5K to 50K). Scale is used to adjust for varying RC constants. For
larger RC constants, Scale should be set low (a minimum value of one). For
smaller RC constants, Scale should be set to its maximum value (255). If Scale is
set correctly, Var should be zero near minimum resistance and 255 near maximum
resistance.

Unfortunately, Scale must be determined experimentally. To do so, set the device
under measure to maximum resistance and read it with Scale set to 127. Adjust
Scale until the Pot command returns 254. If 255, decrease the scale. If 253 or
lower, increase the scale. (Note: This is similar to the process performed by the
Alt-P option of the BS1 environment).

Use the following code to automate the process. Make sure that you set the pot to
maximum resistance.

B0 Var Byte
scale Var Byte
For scale = 1 To 255

POT 0,scale,B0
If (B0 > 253) Then calibrated

Next scale
SEROUT 2,0,["Increase R or C.",10,13]
Stop
calibrated:

SEROUT 2,0,["Scale= ",#scale,10,13]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

POT

194 www.melabs.com 2013-03-06

Potentiometer wiring example:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PULSIN

2013-03-06 www.melabs.com 195

5.58 PULSIN
PULSIN Pin, State, Var

Measures pulse width on Pin. If State is zero, the width of a low pulse is measured.
If State is one, the width of a high pulse is measured. The measured width is placed
in Var. If the pulse edge never happens or the width of the pulse is too great to
measure, Var is set to zero.

Pin is automatically made an input. Pin may be a constant, 0 - 15, or a variable that
contains a number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

The resolution of PULSIN is dependent upon the oscillator frequency. If a 4MHz
oscillator is used, the pulse width is returned in 10us increments. If a 20MHz
oscillator is used, the pulse width will have a 2us resolution. Defining an OSC value
has no effect on PULSIN. The resolution always changes with the actual oscillator
speed.

PULSIN normally waits a maximum of 65535 counts before it determines there is
no pulse. This limit also applies to the maximum pulse width that may be
measured. The limit may be changed with the following define:

DEFINE PULSIN_MAX 65535 ' Limit wait-for-pulse and
maximum-pulse count

 For PBPW, the maximum PULSIN_MAX value is 65535. For PBPL, the maximum
is 4,294,967,295. When the defined limit is exceeded, either when waiting for a
pulse to begin or waiting for the pulse to end, PULSIN returns a value of zero.

This DEFINE also affects RCTIME in the same manner.

' Measure high pulse on Pin4 stored in W3
PULSIN PORTB.4,1,W3

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PULSOUT

196 www.melabs.com 2013-03-06

5.59 PULSOUT
PULSOUT Pin, Period

Generates a pulse on Pin of specified Period. The pulse is generated by toggling
the pin twice, thus the initial state of the pin determines the polarity of the pulse.
Pin is automatically made an output. Pin may be a constant, 0 - 15, or a variable
that contains a number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

The resolution of PULSOUT is dependent upon the oscillator frequency. If a 4MHz
oscillator is used, the Period of the generated pulse will be in 10us increments. If a
20MHz oscillator is used, Period will have a 2us resolution. Defining an OSC value
has no effect on PULSOUT. The resolution always changes with the actual
oscillator speed.

' Send a pulse 1mSec long (at 4MHz) to Pin5
PULSOUT PORTB.5,100

PULSOUT is a legacy command that is included for compatibility with other
languages. Consider the following example for a timed pulse on PORTB.5 using
PAUSEUS:

' Send a high pulse 1mSec long (at any defined osc) to Pin5
' The pin should be set as an output with "OUTPUT PORTB.5"

PORTB.5 = 1 ' Set the pin high
PAUSEUS 1000 ' Pause for 1mS
PORTB.5 = 0 ' Set the pin low

The advantages to this method are:

The time is set in uS and PBP will automatically adjust to achieve this with any
system-clock frequency that is defined with DEFINE OSC.

The active state of the pulse is not dependent on the state of the pin before the
command is executed. The active state is specified and less prone to accidental
inversion.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PWM

2013-03-06 www.melabs.com 197

5.60 PWM
PWM Pin, Duty, Cycle

Outputs a pulse width modulated pulse train on Pin. Each cycle of PWM consists
of 256 steps. The Duty cycle for each PWM cycle ranges from 0 (0%) to 255
(100%). This PWM cycle is repeated Cycle times. Pin may be a constant, 0 - 15,
or a variable that contains a number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

PWM is a software-based command and does not require that the target device
have PWM capability. The output pin may be set to any digital I/O pin, and may be
different in different PWM commands within the same program.

The Cycle time of PWM is dependent upon the oscillator frequency. If a 4MHz
oscillator is used, each Cycle is about 5ms long. If a 20MHz oscillator is used,
each Cycle is about 1ms in length. Defining an OSC value has no effect on PWM.
The Cycle time always changes with the actual oscillator speed.

If you want continuous PWM output and the PIC MCU has PWM hardware, HPWM
may be used instead of PWM. See the section on for HPWM more information
about it.

Pin is made an output just prior to pulse generation and reverts to an input after
generation stops. The PWM output on a pin looks like so much garbage, not a
beautiful series of square waves. A filter of some sort is necessary to turn the
signal into something useful. An RC circuit can be used as a simple D/A converter:

PWM PORTB.7,127,100 ' Send a 50% duty cycle PWM
signal out Pin7 for100 cycles

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

RANDOM

198 www.melabs.com 2013-03-06

5.61 RANDOM
RANDOM Var

Perform one iteration of pseudo-randomization on Var. Var should be a 16-bit
variable. Array variables with a variable index may not be used in RANDOM
although array variables with a constant index are allowed. Var is used both as the
seed and to store the result. The pseudo-random algorithm used has a walking
length of 65535 (only zero is not produced).

RANDOM is not a true random-number generator. It performs a complex math
operation on the seed value, resulting in a "seemingly random" result. The same
seed value will always yield exactly the same result. If the result is used for the
seed value in subsequent iterations of RANDOM, the result is a predictable
repeating sequence of numbers.

RANDOM W4 ' Randomize value in W4

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

RCTIME

2013-03-06 www.melabs.com 199

5.62 RCTIME
RCTIME Pin, State, Var

RCTIME measures the time a Pin stays in a particular State. It is basically half a
PULSIN. Pin is automatically made an input. Pin may be a constant, 0 - 15, or a
variable that contains a number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

RCTIME may be used to read a potentiometer (or some other resistive device).
Resistance can be measured by discharging and timing the charge (or vice versa)
of a capacitor through the resistor (typically 5K to 50K).

The resolution of RCTIME is dependent upon the oscillator frequency. If a 4MHz
oscillator is used, the time in state is returned in 10us increments. If a 20MHz
oscillator is used, the time in state will have a 2us resolution. Defining an OSC
value has no effect on RCTIME. The resolution always changes with the actual
oscillator speed.

If the pin never changes state, 0 is returned.

RCTIME normally waits a maximum of 65535 counts before it terminates and
returns a zero value. This limit may be changed with the following define:

DEFINE PULSIN_MAX 65535 ' Limit wait-for-pulse and
maximum-pulse count

 For PBPW, the maximum PULSIN_MAX value is 65535. For PBPL, the maximum
is 4,294,967,295.

This DEFINE also affects PULSIN in the same manner.

Low PORTB.3 ' Discharge cap to start
Pause 10 ' Discharge for 10ms
RCTIME PORTB.3,0,W0 ' Read potentiometer on Pin3

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

READ

200 www.melabs.com 2013-03-06

5.63 READ
READ Address,{WORD}{LONG}Var {,Var...}

Read bytes, words and longs (if PBPL used) from the on-chip EEPROM at the
specified Address and stores the result in Var. This instruction may only be used
with a PIC MCU that has on-chip EEPROM (Data Space).

READ will not work on devices with on-chip I2C interfaced serial EEPROM like the
PIC12CE67x and PIC16CE62x parts. Use the I2CREAD instruction instead.

READ 5,B0 ' Put the value at EEPROM
location 5 into B0

READ 0,Word W1,Word W2,B6
READ 10,Long L0 ' PBPL only

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

READCODE

2013-03-06 www.melabs.com 201

5.64 READCODE
READCODE Address, Var

Read the value at location Address in code space into Var. Some PIC16F and
PIC18 devices allow program code to be read at run-time. This may be useful for
additional data storage or to verify the validity of the program code. For PIC16F
devices, 14-bit-sized data can be read from word code space Addresses.

For PIC18 devices, byte or word-sized data can be read from byte (rather than
word) code space Addresses. The listing file may be examined to determine
program addresses.

READCODE $100,w ' Put the code word at location
$100 into W

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

REPEAT..UNTIL

202 www.melabs.com 2013-03-06

5.65 REPEAT..UNTIL
REPEAT

Statement...
UNTIL Condition

This command has been deprecated. Use DO..LOOP instead.

REPEATedly execute Statements UNTIL the specified Condition is true. When the
Condition is true, execution continues at the statement following the UNTIL.
Condition may be any comparison expression.

i = 0
REPEAT

PORTB.0[i] = 0
i = i + 1

UNTIL i > 7

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

RESUME

2013-03-06 www.melabs.com 203

5.66 RESUME
RESUME {Label}

Pick up where program left off after handling an interrupt. RESUME is similar to
RETURN but is used at the end of a PICBASIC PRO interrupt handler.

If the optional Label is used, program execution will continue at Label instead of
where it was when it was interrupted. This can, however, cause problems with the
stack. If the device has a stack pointer that is not accessible by the program, like a
PIC16F877A, any other return addresses on the stack will no longer be accessible.
If the stack pointer is accessible as it is on the 14-bit enhanced core and the PIC18
devices, it is cleared to 0 before the jump to Label is executed. If you would rather
manipulate the stack pointer yourself, the following DEFINE keeps the compiler
from clearing it:

DEFINE NO_CLEAR_STKPTR 1

See ON INTERRUPT for more information.

clockint:
seconds = seconds + 1 ' Count time

RESUME ' Return to program after
interrupt

error:
High errorled ' Turn on error LED

RESUME restart ' Resume somewhere else

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

RETURN

204 www.melabs.com 2013-03-06

5.67 RETURN
RETURN

Return from subroutine. RETURN resumes execution at the statement following
the GOSUB which called the subroutine.

GOSUB sub1 ' Go to subroutine labeled sub1
...

sub1:
SEROUT 0,N2400,["Lunch"] ' Send "Lunch" out Pin0

serially
RETURN ' Return to main program after

GOSUB

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

REVERSE

2013-03-06 www.melabs.com 205

5.68 REVERSE
REVERSE Pin

If Pin is an input, it is made an output. If Pin is an output, it is made an input. Pin
may be a constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g. B0) or a
pin name (e.g. PORTA.0).

OUTPUT 4 ' Make Pin4 an output
REVERSE 4 ' Change Pin4 to an input

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SELECT CASE

206 www.melabs.com 2013-03-06

5.69 SELECT CASE
SELECT CASE Var

CASE Expr1 {, Expr...}Statement...
CASE Expr2 {, Expr...}Statement...
{CASE ELSE Statement...}

END SELECT

CASE statements are sometimes easier to use than multiple IF..THENs. These
statements are used to compare a variable with different values or ranges of
values, and take action based on the value.

The Variable to be used in all of the comparisons is specified in the SELECT CASE
statement. Each CASE is followed by the Statements to be executed if the CASE is
true.

IS may be used to specify a comparison other than equal to. Note that "IS"
comparisons may only be performed with relation to the Variable specified in the
SELECT CASE statement. Additional expressions and compound expressions will
result in unexpected behavior.

SELECT CASE x
CASE IS (PORTB.0 = 0) ' NOT VALID

CASEs are tested and evaluated in the order in which they are written within the
SELECT CASE structure. The first CASE that is evaluated as true will execute,
and the program will resume execution on the line after END SELECT. Only one
CASE will execute, even if multiple CASE statements evaluate as true.

If none of the CASEs are true, the Statements under the optional CASE ELSE
statement are executed. An END SELECT closes the SELECT CASE.

SELECT CASE x
CASE 1

y = 10
CASE 2, 3

y = 20
CASE IS > 5

y = 100
CASE ELSE

y = 0
END SELECT

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN

2013-03-06 www.melabs.com 207

5.70 SERIN
SERIN Pin, Mode,{Timeout, Label,}{[Qual...],}{Item...}

Receive one or more Items on Pin in standard asynchronous format using 8 data
bits, no parity and one stop bit (8N1). SERIN is similar to the BS1 SERIN
command with the addition of a Timeout. Pin is automatically made an input. Pin
may be a constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g. B0) or a
pin name (e.g. PORTA.0).

SERIN is a legacy command that has built-in limitations for
compatibility with other languages. For more power and
versatility, consider the commands DEBUGIN, SERIN2, and HSERIN.

The Mode names (e.g. T2400) are defined in the file MODEDEFS.BAS. To use
them, add the line:

Include "modedefs.bas"

to the top of the PICBASIC PRO program. BS1DEFS.BAS and BS2DEFS.BAS
already includes MODEDEFS.BAS. Do not include it again if one of these files is
already included. The Mode numbers may be used without including this file.

Mode Mode No. Baud Rate State

T2400 0 2400

True
T1200 1 1200

T9600 2 9600

T300 3 300
N2400 4 2400

Inverte
d

N1200 5 1200
N9600 6 9600
N300 7 300

An optional Timeout and Label may be included to allow the program to continue if
a character is not received within a certain amount of time. Timeout is specified in 1
millisecond units. If the serial input pin stays in the idle state during the Timeout
time, the program will exit the SERIN command and jump to Label.

The list of data items to be received may be preceded by one or more qualifiers
enclosed within brackets. SERIN must receive these bytes in exact order before
receiving the data items. If any byte received does not match the next byte in the
qualifier sequence, the qualification process starts over (i.e. the next received byte
is compared to the first item in the qualifier list). A Qualifier can be a constant,

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN

208 www.melabs.com 2013-03-06

variable or a string constant. Each character of a string is treated as an individual
qualifier.

Once the qualifiers are satisfied, SERIN begins storing data in the variables
associated with each Item. If the variable name is used alone, the value of the
received ASCII character is stored in the variable. If variable is preceded by a
pound sign (#), SERIN converts a decimal value in ASCII and stores the result in
that variable. All non-digits received prior to the first digit of the decimal value are
ignored and discarded. The non-digit character which terminates the decimal value
is also discarded. The decimal value received may not be greater than 65535,
even when a long variable is specified.

SERIN assumes a 4MHz oscillator when generating its bit timing. To maintain the
proper baud rate timing with other oscillator values, be sure to DEFINE the OSC
setting to the new oscillator value.

While single-chip RS-232 level converters are common and inexpensive, the
excellent I/O specifications of the PIC MCU allow most applications to run without
level converters. Rather, inverted input (N300..N9600) can be used in conjunction
with a current limiting resistor.

' Wait until the character "A" is received serially on Pin1
and put next character into B0

SERIN 1,N2400,["A"],B0

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN2

2013-03-06 www.melabs.com 209

5.71 SERIN2
SERIN2 DataPin{\FlowPin},Mode,{ParityLabel,}{Timeout, Label,}[Item...]

Receive one or more Items on Pin in standard asynchronous format. SERIN2 is
similar to the BS2 SERIN command. DataPin is automatically made an input. The
optional FlowPin is automatically made an output. DataPin and FlowPin may be a
constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g. B0) or a pin name
(e.g. PORTA.0).

The optional flow control pin, FlowPin, may be included to help keep data from
overrunning the receiver. If it is used, FlowPin is automatically set to the enabled
state to allow transmission of each character. This enabled state is determined by
the polarity of the data specified by Mode.

Mode is used to specify the baud rate and operating parameters of the serial
transfer. The low order 13 bits select the baud rate. Bit 13 selects parity or no
parity. Bit 14 selects inverted or true level. Bit-15 is not used.

The baud rate bits specify the bit time in microseconds - 20. To find the value for a
given baud rate, use the equation:

(1000000 / baud) - 20

Some standard baud rates are listed in the following table.

Baud Rate
Bits 0 -
12

300 3313
600 1646
1200 813
2400 396
4800 188
9600* 84
19200* 32
38400* 6

*Oscillator faster than 4MHz may be required.

Bit 13 selects parity (bit 13 = 1) or no parity (bit 13 = 0). Normally, the serial
transmissions are 8N1 (8 data bits, no parity and 1 stop bit). If parity is selected,
the data is received as 7E1 (7 data bits, even parity and 1 stop bit). To receive odd
parity instead of even parity, include the following DEFINE in the program:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN2

210 www.melabs.com 2013-03-06

DEFINE SER2_ODD 1

Bit 14 selects the level of the data and flow control pins. If bit 14 = 0, the data is
received in true form for use with RS-232 drivers. If bit14 = 1, the data is received
inverted. This mode can be used to avoid installing RS232 drivers.

Some examples of Mode are: Mode = 84 (9600 baud, no parity, true), Mode =
16780 (2400 baud, no parity, inverted), Mode = 27889 (300 baud, even parity,
inverted). Section 8.6 shows more Mode examples.

If ParityLabel is included, this label will be jumped to if a character with bad parity is
received. It should only be used if parity is selected (bit 13 = 1).

An optional Timeout and Label may be included to allow the program to continue if
a character is not received within a certain amount of time. Timeout is specified in 1
millisecond units. If the serial input pin stays in the idle state during the Timeout
time, the program will exit the SERIN2 command and jump to Label.

A DEFINE allows the use of data bits other than 8 (or 7 with parity). SER2_BITS
data bits may range from 4 bits to 8 (the default if no DEFINE is specified).
Enabling parity uses one of the number of bits specified.

Defining SER2_BITS to 9 allows 8 bits to be read and written along with a 9th parity
bit.

With parity disabled (the default):

DEFINE SER2_BITS 4 ' Set Serin2 and Serout2 data
bits to 4

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2 data
bits to 5

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2 data
bits to 6

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2 data
bits to 7

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2 data
bits to 8 (default)

With parity enabled:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN2

2013-03-06 www.melabs.com 211

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2 data
bits to 4

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2 data
bits to 5

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2 data
bits to 6

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2 data
bits to 7 (default)

DEFINE SER2_BITS 9 ' Set Serin2 and Serout2 data
bits to 8

An assortment of string-parsing modifiers is available for use within the item list of
this command. These modifiers are capable of extracting data from input strings to
various variable types:

Input Modifiers for Parsing Strings
Modifier Operation
DEC{1..10} Receive decimal digits
BIN{1..32} Receive binary digits
HEX{1..8} Receive upper case hexadecimal

digits
SKIP n Skip n received characters
STR ArrayVar\n{\c} Receive string of n characters

optionally ended in character c
WAIT () Wait for sequence of characters
WAITSTR ArrayVar{\n} Wait for character string

See section 2.10 for details on string-parsing modifiers.

SERIN2 assumes a 4MHz oscillator when generating its bit timing. To maintain the
proper baud rate timing with other oscillator values, be sure to DEFINE the OSC
setting to the new oscillator value. An oscillator speed faster than 4MHz may be
required for reliable operation at 9600 baud and above.

While single-chip RS-232 level converters are common and inexpensive, thanks to
current RS-232 implementation and the excellent I/O specifications of the PIC
MCU, most applications don't require level converters. Rather, inverted TTL (Mode
bit 14 = 1) can be used. A current limiting resistor is suggested (RS-232 is
supposed to be short-tolerant).

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN2

212 www.melabs.com 2013-03-06

SERIN2 is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

' Wait until the character "A" is received serially
' on Pin1 and put next character into B0
SERIN2 1,16780,[WAIT("A"),B0]
' Skip 2 chars and grab a 4 digit decimal number
SERIN2 PORTA.1,84,[SKIP 2,DEC4 B0]
SERIN2 PORTA.1\PORTA.0,84,100,tlabel,_

[WAIT("x",b0),STR ar]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SEROUT

2013-03-06 www.melabs.com 213

5.72 SEROUT
SEROUT Pin, Mode, [Item{,Item...}]

Sends one or more items to Pin in standard asynchronous format using 8 data bits,
no parity and one stop (8N1). SEROUT is similar to the BS1 SEROUT command.
Pin is automatically made an output. Pin may be a constant, 0 - 15, or a variable
that contains a number 0 - 15 (e.g. B0) or a pin name (e.g. PORTA.0).

SEROUT is a legacy command that has built-in limitations for
compatibility with other languages. For more power and
versatility, consider the commands DEBUG, SEROUT2, and HSEROUT.

The Mode names (e.g. T2400) are defined in the file MODEDEFS.BAS. To use
them, add the line:

Include "modedefs.bas"

to the top of the PICBASIC PRO program. BS1DEFS.BAS and BS2DEFS.BAS
already includes MODEDEFS.BAS. Do not include it again if one of these files is
already included. The Mode numbers may be used without including this file.

Mode Mode No. Baud Rate State

T2400 0 2400

Driven True
T1200 1 1200

T9600 2 9600

T300 3 300
N2400 4 2400

Driven
Inverted

N1200 5 1200
N9600 6 9600
N300 7 300
OT2400 8 2400

Open True*
OT1200 9 1200
OT9600 10 9600
OT300 11 300
ON2400 12 2400

Open Inverted*
ON1200 13 1200
ON9600 14 9600
ON300 15 300

* Open modes not supported on 12-bit core PIC MCUs.

SEROUT supports three different data types which may be mixed and matched
freely within a single SEROUT statement.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SEROUT

214 www.melabs.com 2013-03-06

1) A string constant is output as a literal string of characters.
2) A numeric value (either a variable or a constant) will send the

corresponding ASCII character. Most notably, 13 is carriage return and 10
is line feed.

3) A numeric value preceded by a pound sign (#) will send the ASCII
representation of its decimal value, up to 65535. For example, if W0 =
123, then #W0 (or #123) will send "1", "2", "3".

SEROUT assumes a 4MHz oscillator when generating its bit timing. To maintain
the proper baud rate timing with other oscillator values, be sure to DEFINE the
OSC setting to the new oscillator value.

In some cases, the transmission rates of SEROUT instructions may present
characters too quickly to the receiving device. A DEFINE adds character pacing to
the serial output transmissions. This allows additional time between the characters
as they are transmitted. The character pacing DEFINE allows a delay of 1 to 65,535
microseconds (.001 to 65.535 milliseconds) between each character transmitted.

For example, to pause 1 millisecond between the transmission of each character:

DEFINE CHAR_PACING 1000

While single-chip RS-232 level converters are common and inexpensive, thanks to
current RS-232 implementation and the excellent I/O specifications of the PIC
MCU, most applications don't require level converters. Rather, inverted TTL
(N300..N9600) can be used. A current limiting resistor is suggested (RS-232 is
supposed to be short-tolerant).

SEROUT 0,N2400,[#B0,10] ' Send the ASCII value of B0

followed by a linefeed out Pin0
serially

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SEROUT2

2013-03-06 www.melabs.com 215

5.73 SEROUT2
SEROUT2 DataPin{\FlowPin},Mode,{Pace,} {Timeout,Label,}[Item...]

Send one or more Items to DataPin in standard asynchronous serial format.
SEROUT2 is similar to the BS2 SEROUT command. DataPin is automatically
made an output. The optional FlowPin is automatically made an input. DataPin and
FlowPin may be a constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g.
B0) or a pin name (e.g. PORTA.0).

The optional flow control pin, FlowPin, may be included to help keep data from
overrunning the receiver. If it is used, the serial data will not be sent until FlowPin
is in the proper state. This state is determined by the polarity of the data specified
by Mode.

An optional Timeout and Label may be included to allow the program to continue if
FlowPin does not change to the enabled state within a certain amount of time.
Timeout is specified in units of 1 millisecond. If FlowPin stays disabled during the
Timeout time, the program will exit the SEROUT2 command and jump to Label.

In some cases, the transmission rates of SEROUT2 instructions may present
characters too quickly to the receiving device. It may not be desirable to use an
extra pin for flow control. An optional Pace can be used to add character pacing to
the serial output transmissions. This allows additional time between the characters
as they are transmitted. The character pacing allows a delay of 1 to 65,535
milliseconds between each character transmitted.

Mode is used to specify the baud rate and operating parameters of the serial
transfer. The low order 13 bits select the baud rate. Bit 13 selects parity or no
parity. Bit 14 selects inverted or true level. Bit 15 selects whether it is driven or
open.

The baud rate bits specify the bit time in microseconds - 20. To find the value for a
given baud rate, use the equation:

(1000000 / baud) - 20

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SEROUT2

216 www.melabs.com 2013-03-06

Some standard baud rates are listed in the following table.

Baud Rate
Bits 0 -
12

300 3313
600 1646
1200 813
2400 396
4800 188
9600* 84
19200* 32
38400* 6

*Oscillator faster than 4MHz may be required.

Bit 13 selects parity (bit 13 = 1) or no parity (bit 13 = 0). Normally, the serial
transmissions are 8N1 (8 data bits, no parity and 1 stop bit). If parity is selected,
the data is sent as 7E1 (7 data bits, even parity and 1 stop bit). To transmit odd
parity instead of even parity, include the following DEFINE in the program:

DEFINE SER2_ODD 1

Bit 14 selects the level of the data and flow control pins. If bit 14 = 0, the data is
sent in true form for use with RS-232 drivers. If bit14 = 1, the data is sent inverted.
This mode can be used to avoid installing RS-232 drivers.

Bit 15 selects whether the data pin is always driven (bit 15 = 0), or is open in one of
the states (bit 15 = 1). The open mode can be used to chain several devices
together on the same serial bus.

See Section 8.6 for a table of Mode examples.

A DEFINE allows the use of data bits other than 8 (or 7 with parity). SER2_BITS
data bits may range from 4 bits to 8 (the default if no DEFINE is specified).
Enabling parity uses one of the number of bits specified. Defining SER2_BITS to 9
allows 8 bits to be read and written along with a 9th parity bit.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SEROUT2

2013-03-06 www.melabs.com 217

With parity disabled (the default):

DEFINE SER2_BITS 4 ' Set Serin2 and Serout2 data
bits to 4

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2 data
bits to 5

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2 data
bits to 6

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2 data
bits to 7

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2 data
bits to 8 (default)

With parity enabled:

DEFINE SER2_BITS 5 ' Set Serin2 and Serout2 data
bits to 4

DEFINE SER2_BITS 6 ' Set Serin2 and Serout2 data
bits to 5

DEFINE SER2_BITS 7 ' Set Serin2 and Serout2 data
bits to 6

DEFINE SER2_BITS 8 ' Set Serin2 and Serout2 data
bits to 7 (default)

DEFINE SER2_BITS 9 ' Set Serin2 and Serout2 data
bits to 8

An assortment of string-formatting modifiers is available for use within the item list
of this command. These modifiers can be used to format string output that includes
numeric values converted from variables:

Output Modifiers for Formatting Strings
Modifier Operation
{I}{S}DEC{1..10} Send decimal digits
{I}{S}BIN{1..32} Send binary digits
{I}{S}HEX{1..8} Send hexadecimal digits
REP char\count Send character c repeated n

times
STR ArrayVar{\count} Send string of n characters

See section 2.11 for details on string-formatting modifiers.

SEROUT2 assumes a 4MHz oscillator when generating its bit timing. To maintain
the proper baud rate timing with other oscillator values, be sure to DEFINE the
OSC setting to the new oscillator value. An oscillator speed faster than 4MHz may
be required for reliable operation at 9600 baud and above.

While single-chip RS-232 level converters are common and inexpensive, thanks to
current RS-232 implementation and the excellent I/O specifications of the PIC
MCU, most applications don't require level converters. Rather, inverted TTL (Mode

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SEROUT2

218 www.melabs.com 2013-03-06

bit 14 = 1) can be used. A current limiting resistor is suggested (RS-232 is
supposed to be short-tolerant).

SEROUT2 is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

' Send the ASCII value of B0 followed by a linefeed out
' Pin0 serially at 2400 baud
SEROUT2 0,16780,[DEC B0,10]
' Send "B0 =" followed by the binary value of B0 out
' PORTA pin 1 serially at 9600 baud
SEROUT2 PORTA.1,84,["B0=", IHEX4 B0]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SHIFTIN

2013-03-06 www.melabs.com 219

5.74 SHIFTIN
SHIFTIN DataPin, ClockPin, Mode,[Var{\Bits}...]

Clock ClockPin, synchronously shift in bits on DataPin and store the data received
into Var. ClockPin and DataPin may be a constant, 015, or a variable that contains
a number 0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

SHIFTIN is a software-based command and does not require that the target device
have synchronous serial capability. The ClockPin and DataPin parameters may be
set to any digital I/O pins, and may be different in different commands within the
same program.

\Bits optionally specifies the number of bits to be shifted in. If it is not specified, 8
bits are shifted in, independent of the variable type. The Bits shifted in are always
the low order bits, regardless of the Mode used, LSB or MSB.

The Mode names (e.g. MSBPRE) are defined in the file MODEDEFS.BAS. To use
them, add the line:

Include "modedefs.bas"

to the top of the PICBASIC PRO program. BS1DEFS.BAS and BS2DEFS.BAS
already includes MODEDEFS.BAS. Do not include it again if one of these files is
already included. The Mode numbers may be used without including this file. Some
Modes do not have a name.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SHIFTIN

220 www.melabs.com 2013-03-06

Mode Mode No. Operation

MSBPRE 0 Shift data in highest bit
first, Read data before
sending clock. Clock idles
low.

LSBPRE 1 Shift data in lowest bit
first, Read data before
sending clock. Clock idles
low.

MSBPOST 2 Shift data in highest bit
first, Read data after
sending clock. Clock idles
low.

LSBPOST 3 Shift data in lowest bit
first, Read data after
sending clock. Clock idles
low.

 4 Shift data in highest bit
first, Read data before
sending clock. Clock idles
high.

 5 Shift data in lowest bit
first, Read data before
sending clock. Clock idles
high.

 6 Shift data in highest bit
first, Read data after
sending clock. Clock idles
high.

 7 Shift data in lowest bit
first, Read data after
sending clock. Clock idles
high.

For Modes 0-3, the clock idles low, toggles high to clock in a bit, and then returns
low. For Modes 4-7, the clock idles high, toggles low to clock in a bit, and then
returns high.

The shift clock runs at about 50kHz, dependent on the oscillator. The active state is
held to a minimum of 2 microseconds. A DEFINE allows the active state of the
clock to be extended by an additional number of microseconds up to 65,535
(65.535 milliseconds) to slow the clock rate. The minimum additional delay is
defined by the PAUSEUS timing. See its section for the minimum for any given
oscillator. This DEFINE is not available on 12-bit core PIC MCUs.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SHIFTIN

2013-03-06 www.melabs.com 221

For example, to slow the clock by an additional 100 microseconds:

DEFINE SHIFT_PAUSEUS 100

The following diagram shows the relationship of the clock to the data for the various
modes:

Examples:

SHIFTIN 0,1,MSBPRE,[B0,B1\4]

SPI communications may be accomplished with SHIFTIN/SHIFTOUT. A Chip-
Select (CS) pin must be defined and manipulated manually before and after the
commands:

CS VAR PORTA.5 ' Chip select pin
CS = 0 ' Enable serial EEPROM
' Send read command and address
SHIFTOUT SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
SHIFTIN SO, SCK, MSBPRE, [B0] ' Read data
CS = 1 ' Disable

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SHIFTOUT

222 www.melabs.com 2013-03-06

5.75 SHIFTOUT
SHIFTOUT DataPin, ClockPin, Mode, [Var{\Bits}...]

Synchronously shift out Var on ClockPin and DataPin. ClockPin and DataPin may
be a constant, 0-15, or a variable that contains a number 0-15 (e.g. B0) or a pin
name (e.g. PORTA.0).

SHIFTOUT is a software-based command and does not require that the target
device have synchronous serial capability. The ClockPin and DataPin parameters
may be set to any digital I/O pins, and may be different in different commands
within the same program.

\Bits optionally specifies the number of bits to be shifted out. If it is not specified, 8
bits are shifted out, independent of the variable type. The Bits shifted out are
always the low order bits, regardless of the Mode used, LSB or MSB. Up to 32 Bits
can be shifted out of a single (long) variable. If more than 32 Bits are required,
multiple variables or constants may be included between the square brackets.

The Mode names (e.g. LSBFIRST) are defined in the file MODEDEFS.BAS. To
use them, add the line:

Include "modedefs.bas"

to the top of the PICBASIC PRO program. BS1DEFS.BAS and BS2DEFS.BAS
already includes MODEDEFS.BAS. Do not include it again if one of these files is
already included. The Mode numbers may be used without including this file. Some
Modes do not have a name.

Mode Mode No. Operation

LSBFIRST 0 Shift data out lowest bit
first. Clock idles low.

MSBFIRST 1 Shift data out highest bit
first. Clock idles low.

 4 Shift data out lowest bit
first. Clock idles high.

 5 Shift data out highest bit
first. Clock idles high.

For Modes 0-1, the clock idles low, toggles high to clock in a bit, and then returns
low. For Modes 4-5, the clock idles high, toggles low to clock in a bit, and then
returns high.

The shift clock runs at about 50kHz, dependent on the oscillator. The active state is
held to a minimum of 2 microseconds. A DEFINE allows the active state of the
clock to be extended by an additional number of microseconds up to 65,535
(65.535 milliseconds) to slow the clock rate. The minimum additional delay is

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SHIFTOUT

2013-03-06 www.melabs.com 223

defined by the PAUSEUS timing. See its section for the minimum for any given
oscillator. This DEFINE is not available on 12-bit core PIC MCUs.

For example, to slow the clock by an additional 100 microseconds:

DEFINE SHIFT_PAUSEUS 100

The following diagram shows the relationship of the clock to the data for the various
modes:

Examples:

SHIFTOUT 0,1,MSBFIRST,[B0,B1]
SHIFTOUT PORTA.1,PORTA.2,1,[wordvar\4]
SHIFTOUT PORTC.1,PORTB.1,4,[$1234\16, $56]

SPI communications may be accomplished with SHIFTIN/SHIFTOUT. A Chip-
Select (CS) pin must be defined and manipulated manually before and after the
commands:

CS VAR PORTA.5 ' Chip select pin
CS = 0 ' Enable serial EEPROM
' Send read command and address
SHIFTOUT SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
SHIFTIN SO, SCK, MSBPRE, [B0] ' Read data
CS = 1 ' Disable

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SLEEP

224 www.melabs.com 2013-03-06

5.76 SLEEP
SLEEP Period

Place microcontroller into low power mode for Period seconds. Period is 16-bits
using PBPW, so delays can be up to 65,535 seconds (just over 18 hours). For
PBPL, Period is 32-bits so delays can be quite, quite long.

To achieve minimum current draw it may be necessary to turn off other peripherals
on the device, such as the ADC, before executing the SLEEP command. See the
Microchip data sheet for the specific device for information about these register
settings.

SLEEP wakes up periodically using the Watchdog Timer to check to see if its time
is up. If time is not up, it goes back to sleep until the next Watchdog Timer timeout
and checks again. If a program is sleeping and waiting for some other event to
wake it up, such as an interrupt, it may be more desirable to use the NAP command
as it does not operate in SLEEP's looped fashion.

SLEEP uses the Watchdog Timer so it is independent of the actual oscillator
frequency. The granularity is about 2 seconds and may vary based on device
specifics and temperature. This variance is unlike the BASIC Stamp. The change
was necessitated because when the PIC MCU executes a Watchdog Timer reset, it
resets many of the internal registers to predefined values. These values may differ
greatly from what your program may expect. By running the SLEEP command
uncalibrated, this issue is sidestepped.

SLEEP 60 ' Sleep for about 1 minute

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SOUND

2013-03-06 www.melabs.com 225

5.77 SOUND
SOUND Pin, [Note, Duration{,Note, Duration...}]

Generates tone and/or white noise on the specified Pin. Pin is automatically made
an output. Pin may be a constant, 0 - 15, or a variable that contains a number 0 -
15 (e.g. B0) or a pin name (e.g. PORTA.0).

Note 0 is silence. Notes 1-127 are tones. Notes 128-255 are white noise. Tones
and white noises are in ascending order (i.e. 1 and 128 are the lowest frequencies,
127 and 255 are the highest). Note 1 is about 78.74Hz and Note 127 is about
10,000Hz.

Duration is 0-255 and determines how long the Note is played in about 12
millisecond increments. Note and Duration needn't be constants.

SOUND outputs TTL-level square waves. Thanks to the excellent I/O
characteristics of the PIC MCU, a speaker can be driven through a capacitor. The
value of the capacitor should be determined based on the frequencies of interest
and the speaker load. Piezo speakers can be driven directly.

SOUND PORTB.7,[100,10,50,10]
' Send 2 sounds consecutively toPin7

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

STOP

226 www.melabs.com 2013-03-06

5.78 STOP
STOP

Stop program execution by executing an endless loop. This does not place the
microcontroller into low power mode. The microcontroller is still working as hard as
ever. It is just not getting much done.

STOP ' Stop program dead in its
tracks

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SWAP

2013-03-06 www.melabs.com 227

5.79 SWAP
SWAP Variable, Variable

Exchange the values between 2 variables. Usually, it is a tedious process to swap
the value of 2 variables. SWAP does it in one statement without using any
intermediate variables. It can be used with bit, byte, word and long variables.
Array variables with a variable index may not be used in SWAP although array
variables with a constant index are allowed.

Temp = B0
B0 = B1 ' Old way
B1 = temp
SWAP B0, B1 ' One line way

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

TOGGLE

228 www.melabs.com 2013-03-06

5.80 TOGGLE
TOGGLE Pin

Invert the state of the specified Pin. Pin is automatically made an output. Pin may
be a constant, 0 - 15, or a variable that contains a number 0 - 15 (e.g. B0) or a pin
name (e.g. PORTA.0).

Low 0 ' Start Pin0 as low
TOGGLE 0 ' Change state of Pin0 to high

Since this command automatically sets the data-direction of the pin it acts on, the
Pin parameter should only be a PORT or GPIO register (or an alias to a PORT or
GPIO register). If the command is directed to act upon a LAT output or a bit within
a variable or SFR, it will attempt to set a data-direction register that doesn't exist.
The result may be unexpected behavior since a bit is changed in a seemingly
random memory location. This can be very difficult to debug.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

USBIN

2013-03-06 www.melabs.com 229

5.81 USBIN
USBIN Endpoint, Buffer, Countvar, Label

Get any available USB data for the Endpoint and place it in the Buffer. Buffer must
be a byte array of suitable length to contain the data. Countvar should be set to the
size of the buffer before USBIN is executed. It will contain the number of bytes
transferred to the buffer. Label will be jumped to if no data is available.

This instruction may only be used with a PIC MCU that has an on-chip USB port
such as the low-speed PIC16C745 and 765, and the full-speed PIC18F2550 and
4550.

The USB and USB18 subdirectories contain the modified Microchip USB libraries
as well as example programs. USB programs require several additional files to
operate (which are in the USB or USB18 subdirectory), some of which will require
modification for your particular application. See the text file in the subdirectory for
more information on the USB commands. The USB subdirectory is for the low-
speed PIC16C devices and the USB18 subdirectory is for the full-speed PIC18F
devices.

USB communications is much more complicated than synchronous (SHIFTIN and
SHIFTOUT) and asynchronous (SERIN, SEROUT and so forth) communications.
There is much more to know about USB operation that can possibly be described
here. The USB information on the Microchip web site needs to be studied. Also,
the book "USB Complete" by Jan Axelson may be helpful.

cnt = 8
USBIN 1, buffer, cnt, idleloop

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

USBINIT

230 www.melabs.com 2013-03-06

5.82 USBINIT
USBINIT

USBINIT needs to be one of the first statements in a program that uses USB
communications. It will initialize the USB portion of the PIC MCU.

This instruction may only be used with a PIC MCU that has an on-chip USB port
such as the low-speed PIC16C745 and 765, and the full-speed PIC18F2550 and
4550.

The USB and USB18 subdirectories contain the modified Microchip USB libraries
as well as example programs. USB programs require several additional files to
operate (which are in the USB or USB18 subdirectory), some of which will require
modification for your particular application. See the text file in the subdirectory for
more information on the USB commands. The USB subdirectory is for the low-
speed PIC16C devices and the USB18 subdirectory is for the full-speed PIC18F
devices.

USB communications is much more complicated than synchronous (SHIFTIN and
SHIFTOUT) and asynchronous (SERIN, SEROUT and so forth) communications.
There is much more to know about USB operation that can possibly be described
here. The USB information on the Microchip web site needs to be studied. Also,
the book "USB Complete" by Jan Axelson may be helpful.

USBINIT

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

USBOUT

2013-03-06 www.melabs.com 231

5.83 USBOUT
USBOUT Endpoint, Buffer, Count, Label

Take Count number of bytes from the array variable Buffer and send them to the
USB Endpoint. If the USB buffer does not have room for the data because of a
pending transmission, no data will be transferred and program execution will
continue at Label.

This instruction may only be used with a PIC MCU that has an on-chip USB port
such as the low-speed PIC16C745 and 765, and the full-speed PIC18F2550 and
4550.

The USB and USB18 subdirectories contain the modified Microchip USB libraries
as well as example programs. USB programs require several additional files to
operate (which are in the USB or USB18 subdirectory), some of which will require
modification for your particular application. See the text file in the subdirectory for
more information on the USB commands. The USB subdirectory is for the low-
speed PIC16C devices and the USB18 subdirectory is for the full-speed PIC18F
devices.

USB communications is much more complicated than synchronous (SHIFTIN and
SHIFTOUT) and asynchronous (SERIN, SEROUT and so forth) communications.
There is much more to know about USB operation that can possibly be described
here. The USB information on the Microchip web site needs to be studied. Also,
the book "USB Complete" by Jan Axelson may be helpful.

USBOUT 1, buffer, 4, outloop

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

USBSERVICE

232 www.melabs.com 2013-03-06

5.84 USBSERVICE
USBSERVICE

USBSERVICE needs to be executed repeatedly in the program. Since the USB
code provided for the full-speed PIC18F devices is polled rather than interrupt
driven, USBSERVICE needs to be executed at least every 10ms throughout the
program. If it is not, the device may drop off the USB bus.

When interacting with Windows, at the beginning of the program after USBINIT, it is
required that USBSERVICE be polled at about 250 us per loop. Even 1ms may be
too slow. It can take up to 5 seconds to complete the initial interaction to get to the
state of usb_device_state == CONFIGURED_STATE, but many times it will
complete much more quickly. Then, you have to continue to poll USBSERVICE to
complete the passing of the HID data to the host. Doing it for another 0.5 seconds
seems to be adequate.

This instruction may only be used with a PIC MCU that has an on-chip full-speed
USB port such as the PIC18F2550 and 4550.

The USB18 subdirectory contains the modified Microchip USB libraries as well as
example programs. USB programs require several additional files to operate
(which are in the USB18 subdirectory), some of which will require modification for
your particular application. See the text file in the subdirectory for more information
on the USB commands.

USB communications is much more complicated than synchronous (SHIFTIN and
SHIFTOUT) and asynchronous (SERIN, SEROUT and so forth) communications.
There is much more to know about USB operation that can possibly be described
here. The USB information on the Microchip web site needs to be studied. Also,
the book "USB Complete" by Jan Axelson may be helpful.

USBSERVICE

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

WHILE..WEND

2013-03-06 www.melabs.com 233

5.85 WHILE..WEND
WHILE Condition Statement...
WEND

This command has been deprecated. Use DO..LOOP instead.

Repeatedly execute Statements WHILE Condition is true. When the Condition is
no longer true, execution continues at the statement following the WEND. Condition
may be any comparison expression.

i = 1
WHILE i <= 10

SEROUT 0,N2400,["No:",#i,13,10]
i = i + 1

WEND

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

WRITE

234 www.melabs.com 2013-03-06

5.86 WRITE
WRITE Address,{WORD}{LONG}Value {,Value...}

Write byte, word or long (if PBPL used) Values to the on-chip EEPROM at the
specified Address. This instruction may only be used with a PIC MCU that has on-
chip EEPROM (Data Space).

WRITE is used to set the values of the on-chip EEPROM at runtime. To set the
values of the on-chip EEPROM at device programming-time, use the DATA or
EEPROM statement.

Each WRITE is self-timed and may take up to 10 milliseconds to execute on a PIC
MCU.

For 12-bit core devices that support flash data memory, like the PIC12F519 and
PIC16F526, ERASECODE must be used to erase the rows of memory before it can
be rewritten using WRITE. See ERASECODE for more information.

If interrupts are used in a program, they must be turned off (masked, not
DISABLEd) before executing a WRITE, and turned back on (if desired) after the
WRITE instruction is complete. An interrupt occurring during a WRITE may cause
it to fail. The following DEFINE turns interrupts off and then back on within a
WRITE command. Do not use this DEFINE if interrupts are not used in the
program.

DEFINE WRITE_INT 1

WRITE will not work on devices with on-chip I2C interfaced serial EEPROM like the
PIC12CE67x and PIC16CE62x parts. Use the I2CWRITE instruction instead.

WRITE 5, B0 ' Send value in B0 to EEPROM
location 5

WRITE 0, Word W1, Word W2, B6
WRITE 10, Long L0 ' PBPL only

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

WRITECODE

2013-03-06 www.melabs.com 235

5.87 WRITECODE
WRITECODE Address, Value

Write Value to the code space at location Address.

Some PIC16F and PIC18F devices allow program code to be written at run-time.
While writing self-modifying code can be a dangerous technique, it does allow non-
volatile data storage in devices that do not have on-chip EEPROM or when more
than the 64 - 1024 bytes that on-chip EEPROM provides is not enough. However,
one must be very careful not to write over active program memory.

Note that code space (program memory) has a finite lifespan estimated in number
of writes. It is shorter lived than other types of memory like RAM and EEPROM
(data memory). WRITECODE, if used, should be used sparingly so as not to "wear
out" the memory in the device.

The listing file may be examined to determine program addresses.

For PIC16F devices, 14-bit-sized data can be written to word code space
Addresses.

For PIC18F devices, byte or word-sized data can be written to byte (rather than
word) code space Addresses. The variable size of Value determines the number of
bytes written. Bit- and byte-sized variables write 1 byte. Word- and long-size
variables write 2 bytes to 2 sequential locations.

For block accessed devices, like the PIC16F877a and PIC18F452, a complete
block must be written at once. This write block size is different for different PIC
MCUs

Note that block writes are not actually executed until the end location of the block is
written to. If you write to random addresses within a block and neglect to write to
the end location, the previously buffered data will not be written and will be lost.

See the Microchip data sheet for the particular device for information on the block
size. Start addresses for will always be exact multiples of the block size, end
addresses are calculated as start address + (block size – 1).

Additionally, some flash PIC MCUs, like the PIC18F series, require a portion of the
code space to be erased before it can be rewritten with WRITECODE. See the
section on ERASECODE for more information.

If interrupts are used in a program, they must be turned off (masked, not
DISABLEd) before executing a WRITECODE, and turned back on (if desired) after
the WRITECODE instruction is complete. An interrupt occurring during a

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

WRITECODE

236 www.melabs.com 2013-03-06

WRITECODE may cause it to fail. The following DEFINE turns interrupts off and
then back on within a WRITECODE command. Do not use this DEFINE if
interrupts are not used in the program.

DEFINE WRITE_INT 1

Flash program writes must be enabled in the configuration for the PIC MCU at
device programming time for WRITECODE to be able to write.

WRITECODE $100,w ' Send value in W to code space
location $100

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

XIN

2013-03-06 www.melabs.com 237

5.88 XIN
XIN DataPin, ZeroPin,{Timeout, Label,}[Var{,...}]

Receive X-10 data and store the House Code and Key Code in Var.

XIN is used to receive information from X-10 devices that can send such
information. X-10 modules are available from a wide variety of sources under
several trade names. An interface is required to connect the microcontroller to the
AC power line. The TW-523 for two-way X-10 communications is required by XIN.
This device contains the power line interface and isolates the microcontroller from
the AC line. Since the X10 format is patented, this interface also covers the license
fees.

DataPin is automatically made an input to receive data from the X-10 interface.
ZeroPin is automatically made an input to receive the zero crossing timing from the
X-10 interface. Both pins should be pulled up to 5 volts with 4.7K resistors.
DataPin and ZeroPin may be a constant, 0-15, or a variable that contains a number
0-15 (e.g. B0) or a pin name (e.g. PORTA.0).

An optional Timeout and Label may be included to allow the program to continue if
X-10 data is not received within a certain amount of time. Timeout is specified in AC
power line half-cycles (approximately 8.33 milliseconds).

XIN only processes data at each zero crossing of the AC power line as received on
ZeroPin. If there are no transitions on this line, XIN will effectively wait forever.

If Var is word-sized, each House Code received is stored in the upper byte of the
word. Each received Key Code is stored in the lower byte of the word. If Var is a
byte, only the Key Code is stored.

The House Code is a number between 0 and 15 that corresponds to the House
Code set on the X-10 module A through P.

The Key Code can be either the number of a specific X-10 module or the function
that is to be performed by a module. In normal practice, first a command specifying
the X-10 module number is sent, followed by a command specifying the function
desired. Some functions operate on all modules at once so the module number is
unnecessary. Hopefully, later examples will clarify things. Key Code numbers 0-15
correspond to module numbers 1-16.

These Key Code numbers are different from the actual numbers sent and received
by the X10 modules. This difference is to match the Key Codes in the BS2. To
remove this Stamp translation, the following DEFINE may be used:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

XIN

238 www.melabs.com 2013-03-06

DEFINE XINXLAT_OFF 1

XIN is not supported on 12-bit core PIC MCUs due to RAM and stack constraints.

XOUT below lists the functions as well as the wiring information.

housekey Var Word

mainloop: ' Get X-10 data

XIN PORTA.2,PORTA.0,[housekey]
' Display X-10 data on LCD
LCDOUT $fe,1,"House=",#housekey.byte1,_
 "Key=",#housekey.byte0

Goto mainloop ' Do it forever
' Check for X-10 data, go to nodata if none
XIN PORTA.2,PORTA.0,1,nodata,[housekey]

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

XOUT

2013-03-06 www.melabs.com 239

5.89 XOUT
XOUT DataPin, ZeroPin, [HouseCode\KeyCode{\Repeat}{,...}]

Send HouseCode followed by KeyCode, Repeat number of times in X10 format. If
the optional Repeat is left off, 2 times (the minimum) is assumed. Repeat is usually
reserved for use with the Bright and Dim commands.

XOUT is used to send control information to X-10 modules. These modules are
available from a wide variety of sources under several trade names. An interface is
required to connect the microcontroller to the AC power line. Either the PL-513 for
send only, or the TW-523 for two-way X-10 communications are required. These
devices contain the power line interface and isolate the microcontroller from the AC
line. Since the X-10 format is patented, these interfaces also cover the license
fees.

DataPin is automatically made an output to send data to the X-10 interface.
ZeroPin is automatically made an input to receive the zero crossing timing from the
X-10 interface. It should be pulled up to 5 volts with a 4.7K resistor. DataPin and
ZeroPin may be a constant, 0-15, or a variable that contains a number 0-15 (e.g.
B0) or a pin name (e.g. PORTA.0).

XOUT only processes data at each zero crossing of the AC power line as received
on ZeroPin. If there are no transitions on this line, XOUT will effectively wait forever.

HouseCode is a number between 0 and 15 that corresponds to the House Code set
on the X-10 module A through P. The proper HouseCode must be sent as part of
each command.

The KeyCode can be either the number of a specific X-10 module or the function
that is to be performed by a module. In normal practice, first a command specifying
the X-10 module number is sent, followed by a command specifying the function
desired. Some functions operate on all modules at once so the module number is
unnecessary. Hopefully, later examples will clarify things. KeyCode numbers 0-15
correspond to module numbers 1-16.

The KeyCode (function) names (e.g. unitOn) are defined in the file
MODEDEFS.BAS. To use them, add the line:

Include "modedefs.bas"

to the top of the PICBASIC PRO program. BS1DEFS.BAS and BS2DEFS.BAS
already includes MODEDEFS.BAS. Do not include it again if one of these files is
already included. The KeyCode numbers may be used without including this file.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

XOUT

240 www.melabs.com 2013-03-06

KeyCode KeyCode No. Operation

unitOn %10010 Turn module on
unitOff %11010 Turn module off
unitsOff %11100 Turn all modules off
lightsOn %10100 Turn all light modules

on
lightsOff %10000 Turn all light modules

off
bright %10110 Brighten light module
dim %11110 Dim light module

These Keycode numbers are different from the actual numbers sent and received
by the X10 modules. This difference is to match the Keycodes in the BS2. To
remove this Stamp translation, the following DEFINE may be used:

DEFINE XOUTXLAT_OFF 1

XOUT is not supported on 12-bit core PIC MCUs due to RAM and stack
constraints.

Wiring to the X-10 interfaces requires 4 connections. Output from the X10 interface
(zero crossing and receive data) are open-collector and require a pull up resistor of
around 4.7K to 5 volts. Wiring tables for each interface is shown below:

PL-513 Wiring

Wire No. Wire Color Connection

1 Black Zero crossing output
2 Red Zero crossing common
3 Green X-10 transmit common
4 Yellow X-10 transmit input

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

XOUT

2013-03-06 www.melabs.com 241

TW-523 Wiring

Wire No. Wire Color Connection

1 Black Zero crossing output

2 Red Common

3 Green X-10 receive
output

4 Yellow X-10 transmit
input

House VAR BYTE
Unit VAR BYTE

Include "modedefs.bas"

house = 0 ' Set house to 0 (A)
unit = 8 ' Set unit to 8 (9)
' Turn on unit 8 in house 0
XOUT PORTA.1,PORTA.0,[house\unit, house\unitOn]

' Turn off all the lights in house 0
XOUT PORTA.1,PORTA.0,[house\lightsOff]

' Blink light 0 on and off every 10 seconds
XOUT PORTA.1,PORTA.0,[house\0]

loop:
XOUT PORTA.1,PORTA.0,[house\unitOn]
Pause 10000 ' Wait 10 seconds

XOUT PORTA.1,PORTA.0,[house\unitOff]
Pause 10000 ' Wait 10 seconds

Goto loop

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

242 www.melabs.com 2013-03-06

Chapter 6: Interrupts

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 243

The term Interrupt refers to the practice of suspending execution of program code
when a predetermined event takes place. The main program is "frozen", while
program execution is routed to an Interrupt Service Routine (ISR) that performs
some task in response to the event that has been detected. When the ISR
completes its duties, program execution is returned to the interrupted process,
which should continue undisturbed.

Interrupts can be triggered by external events like a button press or a sensor input.
They can also be triggered by an internal process like a timer overflowing or a
conversion being completed.

When planning a design using interrupts, thought should be given to which
functions should be performed in the interrupt service routine and which should be
the responsibility of the main program. In most cases, it is desirable to keep the
interrupt routine as short as possible. If the execution time of the ISR is longer than
one iteration of the main program loop, you may want to rethink your design.
Sometimes the project will benefit from a reversal of duties, where the functions of
the main program are moved to the ISR and vice versa.

The details of available interrupts differ from on device to another. You must
consult the datasheet for the specific device you are using. In general, you will find
the following types of interrupt triggers for various chips:

• Change to the state of an input pin
• Change to the state of an input port
• Overflow of an internal timer register
• Overflow of a counter register
• Completion of an analog conversion
• Change in a comparator result
• Reception of serial data
• Completion of a serial data send
• Completion of a timed event capture
• Various failures and error conditions

Interrupts are a necessity for many embedded designs, but it's best not to use them
without real need. Interrupts will always add a layer of complexity to your program
that can make debugging more difficult. Interrupts should not be feared, but you
should accept that a bit of effort may be required to make them work as desired.

Note that the interrupt flag bits (the bits that indicate when a particular interrupt has
occurred) continue to function even when interrupts are disabled. This is a valuable
resource, as you can check and clear the flag bits manually in your program. Your
program can test for an interrupt event, without actually enabling interrupts.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

244 www.melabs.com 2013-03-06

6.1 Interrupts Using ON INTERRUPT
PBP's ON INTERRUPT offers a simplified system of handling interrupts. It acts as
a layer of automatic checking for the hardware interrupt indicators and directs your
program execution to an interrupt-handling subroutine (written in BASIC) that you
specify. ON INTERRUPT offers an easy way to deal with interrupts, but with a
possible delay (latency) in its response to the interrupt trigger. More on latency can
be found later in this section.

This method involves the use of the following commands and directives. They are
listed here with reference to the section in this manual where descriptions can be
found.

4.1 DISABLE
4.3 DISABLE INTERRUPT
4.4 ENABLE
4.6 ENABLE INTERRUPT
4.8 ON INTERRUPT
5.66 RESUME

Details about the workings of the actual interrupt triggers, their control registers,
and their flag bits can be found in the Microchip datasheet for the specific MCU that
you are compiling for.

6.1.1 In Practice

To use the ON INTERRUPT method, the following steps must be performed:

• Place the ON INTERRUPT directive
• Enable the GIE bit and the appropriate Interrupt Enable bit(s).
• Place the interrupt handler routine in a section of program where interrupts

are disabled, and within it:
o Execute code
o Clear interrupt flags
o Finish with a RESUME command

A short example follows that uses the "external interrupt" to toggle the state of an
LED, while the main program flashes a different LED.

This example will also demonstrate the latency that is associated with ON
INTERRUPT. If the interrupt trigger occurs during execution of one of the "PAUSE
500" statements, nothing will happen until the command finishes. This could result
in up to 500mS delay before seeing the effect of the interrupt trigger.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 245

ON INTERRUPT GOTO myint ' Interrupt handler is myint,
enable interrupt-checking for
lines below this point.

INTCON = %10010000 ' Enable GIE and RB0 interrupt

mainloop:
 HIGH led1 ' LED1 on
 PAUSE 500 ' Wait a half second
 LOW led1 ' LED2 off
 PAUSE 500 ' Wait a half second
GOTO mainloop ' Loop forever

DISABLE ' Disable interrupt-checking for

all routines placed below this
line.

myint:
 TOGGLE led2 ' Toggle LED2 when interrupted
 INTCON.1 = 0 ' Clear interrupt flag
RESUME ' Return to main program

If you wish to handle multiple interrupt triggers, each with separate handling
routines, you should check the interrupt flags when entering the interrupt handler.
Execute the appropriate section of code to handle the trigger that brought program
execution to the handler routine.

Notice in the above example that ON INTERRUPT is immediately followed by the
setting of the INTCON register and the GIE bit, before any code in the interrupt-
enabled section of code is executed. Because the interrupt-checking code will
perceive an interrupt event if GIE is clear, care should be taken to only enter the
interrupt-enabled section of code (the code under the ON INTERRUPT directive)
when GIE is set.

If, in the above example, you used a GOTO placed above the ON INTERRUPT
directive to jump directly to the "mainloop" label without first setting the INTCON
register, a false interrupt would be perceived and the program would immediately
jump to the interrupt handler routine.

You can avoid this by placing ON INTERRUPT and the INTCON setting earlier in
the program, so that interrupts are enabled before any jumps occur.

You can also write a safeguard in the first lines of the interrupt handler that checks
the interrupt enable and flag bits to make sure that interrupt is real. Checking only
the flag bit is not enough in this situation because flags are set upon their
associated events, even when the interrupt is not enabled.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

246 www.melabs.com 2013-03-06

Here is an example that would perform this safety check in the "myint" routine in the
above example:

myint:
 ' Execute only when enable and flag bits are both set.
 ' If either bit is clear (low), abort and return.
 IF (INTCON.5=0) OR (INTCON.1=0) THEN RESUME

 TOGGLE led2 ' Toggle LED2 when interrupted
 INTCON.1 = 0 ' Clear interrupt flag
RESUME ' Return to main program

6.1.2 How ON INTERRUPT Works

The ON INTERRUPT method is not quite the same as an Assembly Language
interrupt method. When ON INTERRUPT is used, a short interrupt handler is
placed at location 4 in the PIC MCU. This interrupt handler is simply a Return.
What this does, is send the program back to what it was doing before the interrupt
occurred. It doesn’t require any processor context saving.

What it doesn’t do, is re-enable Global Interrupts as happens using an Assembly
Language RETFIE instruction. In this system, the Global Interrupts Enable bit
(GIE) serves as a flag that can be checked during program execution. If GIE is
disabled, it is known that an interrupt trigger occurred.

In sections of code where the ON INTERRUPT layer has been enabled, a call to a
short subroutine is placed before each statement in the PICBASIC PRO. This short
subroutine checks the state of the Global Interrupt Enable bit. If it is off, an interrupt
is pending, so it vectors to the user's interrupt handler. If it is still set, the program
continues with the next BASIC statement, after which, the GIE bit is checked again
and so forth.

Using ON INTERRUPT, PBP simply flags the interrupt event and immediately goes
back to what it was doing. It does not immediately vector to your interrupt handler.
Since the GIE bit is only checked before each PBP command begins, there could
be considerable delay (latency) before the interrupt is handled. Interrupts that
happen during execution of a PBP command are essentially ignored until the
command finishes. Commands with long execution times may result in long latency
in interrupt handling.

As an example, let's say that the PICBASIC PRO program just started execution of
a Pause 10000 when an interrupt occurs. PBP will flag the interrupt and continue
with the PAUSE. It could be up to 10 seconds later before the interrupt handler is

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 247

executed. If it is buffering characters from a serial port, many characters will be
missed.

To minimize the problem, use only statements that don’t take very long to execute.
For example, instead of Pause 10000, use Pause 1 in a long FOR..NEXT loop.
This will allow PBP to complete each statement more quickly and handle any
pending interrupts.

If interrupt processing needs to occur more quickly than can be provided by ON
INTERRUPT, interrupts in Assembly Language should be used.

When the RESUME statement is encountered at the end of the BASIC interrupt
handler, it sets the GIE bit to re-enable interrupts and returns to where the program
was before the interrupt occurred. If RESUME is given a label to jump to, execution
will continue at that location instead. All previous return addresses will be lost in
this case.

DISABLE stops PBP from inserting the call to the interrupt checker after each
statement. This allows sections of code to execute without the possibility of being
interrupted. ENABLE allows the insertion to continue.

A DISABLE should be placed before the interrupt handler so that it will not keep
getting restarted by checking the GIE bit.

If it is desired to turn off interrupts for some reason after ON INTERRUPT is
encountered, you must not turn off the GIE bit. Turning off this bit tells PBP that an
interrupt has happened and it will execute the interrupt handler forever. Instead,
clear the individual interrupt enable bit(s). In the example above, you could write:

INTCON.5 = 0 ' Disable external interrupt
(See the datasheet)

Note that the enable bit associated with the interrupt that you are using may be in a
different register than INTCON. See the datasheet's section on Interrupts to gain
understanding on the working of the interrupt that you wish to use.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

248 www.melabs.com 2013-03-06

6.2 Interrupts Using Assembly Language
Assembly Language Interrupt Handlers are the most responsive way to handle
interrupt events. Latency with this method is virtually the same as with pure
Assembly programs. Using this method, interrupts will suspend program execution
even during execution of PBP commands.

As you might guess, using Assembly Language is a bit more involved than a purely
BASIC program. We can't offer a full Assembly Language tutorial in this manual,
but we'll try to give you the fundamental concerns for interrupt handlers. There is a
bit more information in section 7.1 In-Line Assembly Language.

6.2.1 Checklist

The requirements for setting up an Assembly interrupt handler are:

• Use a DEFINE to specify the Assembly label that begins the routine
• Declare special variables for saving context (when appropriate)
• Set registers to enable the desired interrupts
• Place the handler routine at the beginning of your program as in-line

Assembly and within it:
o Determine whether context saving code is required and include it

appropriately
o Execute Assembly code to handle the event
o Clear interrupt flags
o Restore context from variables
o Return to main program with RETFIE instruction

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 249

6.2.2 DEFINEs

PBP offers a DEFINE to specify the name of the interrupt service routine label. The
label refers to the Assembly Language label that marks the beginning of your
service routine.

DEFINE INTHAND Label

For devices with multiple priority interrupts, PBP offers a single additional DEFINE
that allows you to specify a second label for a second service routine. This routine
will be used for low-priority interrupts.

DEFINE INTLHAND Label

6.2.3 Enabling Interrupts

Interrupts should be enabled without concern for PBP. In other words, enable
interrupts as appropriate for a pure Assembly Language program.

This will most often consist of at least two bit-settings, one to enable the Global
Interrupt Enable (GIE) and one to enable the specific interrupt that you desire to
use. If the interrupt is a "peripheral" interrupt, there is an additional Peripheral
Interrupt Enable bit (PIE) that must be set.

' For PIC18, enable the USART-receive interrupt:
INTCON = %11000000 ' Enable Global and Peripheral

interrupts
PIE1.5 = 1 ' Enable USART receive interrupt

To disable and enable interrupts during program execution, the easiest method is to
manipulate only the Global Interrupt Enable (GIE) bit:

INTCON.7 = 0 ' Disable interrupts
INTCON.7 = 1 ' Enable interrupts

Note that this is in direct conflict with the ON INTERRUPT method, for which you
should never manipulate the GIE directly.

6.2.4 Placement of the Assembly Language Routine

It is customary to place the interrupt-handler code at the beginning of the
executable program, after declaring variables, constants and aliases. There are
various reasons for this, but an exhaustive explanation for all the device types

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

250 www.melabs.com 2013-03-06

would contain a lot of unnecessary information. Suffice to say that it lessens the
probability of code-page issues with some devices that are vulnerable to such
things.

Since you don't want your interrupt handler to execute upon power-up or reset,
precede the interrupt handler with a PBP GOTO to jump over it.

GOTO main ' Jump over interrupt handler

ASM
myint ; Start handler code
 ; code here
 RETFIE ; Return to main program
ENDASM

main: ' Start PBP program

6.2.5 Declaring Special Variables to Save Context

In order for program execution to return to the main program after handling an
interrupt, there are some key register values that must be saved when leaving the
main program and restored when returning. The data made up of these key
registers is called the "context". Saving and restoring context allows the program to
resume reliably after an interrupt event.

In the following sections, details will be found for each type of PIC microcontroller.

6.2.6 Access to PBP Variables from the Interrupt Handler

We've already touched on bank selection as an issue, not just in interrupt handlers,
but in in-line Assembly Language overall. The thing to remember is that, through
one method or another, the procedures listed here will always result in a BANK0
selection when your interrupt handler begins to execute.

This provides a very simple solution for accessing variables that have been
declared in your PBP code from your interrupt handler. If you declare the variables
in BANK0, they will automatically be accessible from your Assembly code, without
any bank manipulation.

tick VAR BYTE BANK0 ' Declare tick variable in BANK0

If the SYSTEM keyword is not used in the variable declaration, PBP will create the
variable in Assembly with a prepended underscore character. "tick" will become

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 251

"_tick" when translated to Assembly. Therefore, if the variable is declared as
above, you can increment it in your interrupt handler with the following.

 incf _tick, F ; Increment tick variable

6.2.7 Time-Sensitive PBP Commands

When using an Assembly Language interrupt handler, you must remain aware that
the execution of any PBP command in your program could be interrupted. Some
PBP commands are time-critical. A software-based serial command must track
precise baud timing in order to function. A PULSIN command must have a precise
timebase to accurately measure a pulse.

In commands such as these, you should disable interrupts before the command
begins and enable the interrupts after the command finishes.

INTCON.7 = 0
PULSIN PORTB.0, pulse_val
INTCON.7 = 1

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

252 www.melabs.com 2013-03-06

6.3 Assembly Interrupts for PIC18 Devices

6.3.1 Interrupt Priorities

The PIC18 devices offer the capability of assigning two levels of priority to specific
interrupt types. By default, low-priority interrupts are disabled and all interrupts are
handled as high-priority. The use of low-priority interrupts represents an additional
level of complexity. Make sure the practice is actually needed before enabling it.

In order to use low-priority interrupts, you must first enable them (in the BASIC
portion of your program):

RCON.7 = 1 ' Enable interrupt priorities

To assign which priority is used for each interrupt source, you use the IPR bits.
Each bit in the IPR registers controls the priority for ONE interrupt source. Setting
the bit makes it a High Priority and clearing the bit makes it Low Priority. To figure
out which of the IPR bits to use, you must look them up in the datasheet.

IPR bits always default to High Priority, so you only need to change them for Low
Priority if desired.

IPR1.5 = 0 ' Set USART receive interrupt to
LOW priority

Under normal operation, INTCON.6 is the Peripheral Interrupt Enable bit (PEIE).
When using low-priority interrupts, INTCON.6 becomes Low priority Global Interrupt
Enable bit (GIEL). INTCON.7 then becomes the High Priority Global Interrupt
Enable bit (GIEH)

GIEH enables all unmasked high-priority interrupts and GIEL enables all unmasked
low priority interrupts. "unmasked" simply means that the individual Enable bit for
that interrupt source is set to the enabled state. For example, the PIE1.5 bit (RCIE)
enables the USART Receive interrupt. If that bit is 1 then the USART Receive
interrupt is considered "unmasked".

Peripheral interrupts are always enabled since there is no longer a PEIE bit, but the
individual peripheral interrupts must still be enabled to generate interrupts for those
peripherals.

It's important to remember that a Low Priority interrupt can itself be interrupted by a
High Priority interrupt. This can change expected timings or overwrite values if both
routines use the same variables.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 253

6.3.2 Saving and Restoring Context

If only high-priority interrupts are used on a PIC18 device, explicit save/restore
methods are not usually required. The critical SFR values (WREG, STATUS, and
BSR) are automatically saved in shadow registers, and the "retfie FAST" return
method automatically restores the values. Other SFRs like the FSR registers,
PCLATH:U, and PRODL:H should be saved and restored if your interrupt service
routine changes them.

For high-priority interrupts, the handler code can be very simple:

ASM
highP_label ; Label begins the routine
 clrf BSR ; set Bank to 0
 ; your assembly code goes here
 retfie FAST ; Restore context and return
ENDASM

Low-priority interrupts may be interrupted by the occurrence of a high-priority
interrupt. For this reason, explicit context save and restore is necessary in low-
priority interrupt handler. This requires additional variables to be declared in the
PBP program. Declare them as follows:

wsave VAR BYTE BANKA SYSTEM
ssave VAR BYTE SYSTEM
bsave VAR BYTE SYSTEM

The low-priority interrupt handler should save and restore context of critical SFRs
WREG, STATUS, and BSR. Other SFRs like the FSR registers, PCLATH:U, and
PRODL:H should be saved and restored if your interrupt handler code changes
them. An example of a low-priority interrupt handler follows.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

254 www.melabs.com 2013-03-06

ASM
LowP_label ; Label begins the routine
 movwf wsave ; Save the Working register

(WREG)
 movff STATUS, ssave ; Save STATUS reg
 movff BSR, bsave ; Save Bank Select Register

(BSR)
 clrf BSR ; Set Bank to 0

 ; your assembly code goes here

 movff ssave, STATUS ; Restore STATUS
 movff bsave, BSR ; Restore Bank Select Register

(BSR)
 movff WREG, wsave ; Restore Working register

(WREG)
 retfie ; Return
ENDASM

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 255

6.3.3 Example High/Low Priority ISR Framework for PIC18

DEFINE INTHAND HP_ISR ' Assign High Priority Interrupt
Service Routine label

DEFINE INTLHAND LP_ISR ' Assign Low Priority Interrupt

Service Routine label

' These variables are only required when using
' Low-Priority interrupts.
wsave VAR BYTE BANKA SYSTEM
ssave VAR BYTE SYSTEM
bsave VAR BYTE SYSTEM

GOTO main ' Jump over interrupt routines

'----[High Priority interrupt service routines]---------
ASM
HP_ISR
 clrf BSR ; Set Bank to 0

 ; Your Assembly code goes here

 retfie FAST
ENDASM

'----[Low Priority interrupt service routines]----------
ASM
LP_ISR ; Label begins the routine
 movwf wsave ; Save WREG
 movff STATUS, ssave ; Save STATUS
 movff BSR, bsave ; Save BSR
 clrf BSR ; Set Bank to 0

 ; your assembly code goes here

 movff ssave, STATUS ; Restore STATUS
 movff bsave, BSR ; Restore BSR
 movff WREG, wsave ; Restore WREG
 retfie ; Return
ENDASM

main: ' Begin main program here

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

256 www.melabs.com 2013-03-06

6.4 Assembly Interrupts for Enhanced 14-Bit Instruction Set

6.4.1 Saving and Restoring Context

For PIC MCUs that use the Enhanced 14-Bit instruction set (part number
patterns 12F1xxx, 12LF1xxx, 16F1xxx, and 16LF1xxx), context save and restore is
done automatically. You need not write any code for context save or restore.

6.4.2 Example ISR Framework for Enhanced 14-Bit

' Define interrupt handler label
DEFINE INTHAND myint

Goto main ' jump over interrupt handler

ASM
myint ; Context is saved automatically

 clrf BSR ; Set Bank to 0

 ; Your Assembly goes code here

 retfie ; Return with auto context

restore

ENDASM

main: ' Begin main program here

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 257

6.5 Assembly Interrupts for 14-Bit Instruction Set

6.5.1 Declaring Special Variables to Save Context

To accommodate context save and restore in these devices, a set of special
variables must be declared in the PBP program. The names of the variables are:

wsave For saving the W register
ssave For saving the STATUS register
psave For saving the PCLATH register

For PIC12 and PIC16 devices that do not use the Enhanced 14-bit instruction set, it
is necessary to reserve space for the "wsave" variable in a special section of RAM
that is accessible regardless of bank-select bit settings. The reason for this
requirement is that the W register value is saved upon the interrupt event, before
any bank selection change is possible. It will be stored to the memory address
where wsave is allocated, but the bank selection bits may point to a different bank.

Microchip has accommodated this for the devices that share the mid-range
architecture. A few addresses in RAM at the end of banks 1 and higher will access
the equivalent address in BANK0. This can be utilized by placing the wsave
variable in one of these "access RAM" addresses within BANK0.

To determine the actual address, you must consult the datasheet for the specific
device that you are using. In the datasheet, look for the section "Data Memory
Organization". In that section, there should be a table of Special Function
Registers that also shows General Purpose Registers at the bottom of each bank
column.

In banks numbered greater than zero, you should see a small block that is labeled
with something similar to "accesses 70h-7Fh". This means that the wsave variable
should be placed in somewhere in the range of addresses 70h-7Fh.

See the following example taken from the PIC16F882 datasheet. The relevant
information is highlighted near the bottom.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

258 www.melabs.com 2013-03-06

With the clues gathered from the highlighted area of the table shown above, it can
be determined that wsave can be placed at address 70h (written $70 in PBP):

wsave VAR BYTE $70 SYSTEM ' wsave in access RAM

Please note that the appropriate address may change from device to device.
Always consult the datasheet to avoid problems.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 259

The only requirement for the remaining variables "ssave" and "psave" is that they
be placed in BANK0. They do not need to be at any specific address. The
following variable declarations, therefore, would work for the PIC16F882:

wsave VAR BYTE $70 SYSTEM
ssave VAR BYTE BANK0 SYSTEM
psave VAR BYTE BANK0 SYSTEM

The "SYSTEM" keyword is used to remove the preceding underscore from the
Assembly Language variable names. ("wsave" in PBP is also "wsave" in
Assembly.)

6.5.2 Saving and Restoring Context

For PIC12 and PIC16 devices that do not use the Enhanced 14-bit instruction set,
PBP will save context automatically if the device has more than 2K of code space
(more than one code page). This is born of necessity because of the inner
workings of these microcontrollers. For these devices that have 2K or less of code
space, the context save needs to be done manually in your interrupt handler.

PBP inserts an Assembly Language constant for its own use that indicates the side
of the code space. You can make use of this constant to conditionally insert the
context-save code only when needed.

if CODE_SIZE <= 2 ; If less than 2K code space
; Save the state of critical registers (PIC12/PIC16)
 movwf wsave ; Save W
 swapf STATUS,W ; Swap STATUS to W (swap avoids

changing STATUS)
 clrf STATUS ; Clear STATUS
 movwf ssave ; Save swapped STATUS
 movf PCLATH,W ; Move PCLATH to W
 movwf psave ; Save PCLATH
endif

These lines of code should be the very first thing that executes in your interrupt
handler. The function of this code is to save the W register, move the value of
STATUS into W with a swap to avoid affecting the value, clear STATUS to select
BANK0, and finally save the appropriate values to the ssave and psave variables.

The requirement for restoring context is not dependent upon the amount of code
space for these devices. Restoration of context is always required. The steps of
restoring are the reverse of saving. This insures that the bank selection is
manipulated in such a way as to restore the values from the same banks in which

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

260 www.melabs.com 2013-03-06

they were saved. If your interrupt handler code changed the bank selection bits to
something other than BANK0, make sure you change them back to BANK0 before
this code is executed.

; Restore the state of critical registers (PIC12/PIC16)
 movf psave,W ; restore PCLATH
 movwf PCLATH
 swapf ssave,W ; restore STATUS
 movwf STATUS
 swapf wsave,F ; restore W (swap avoids

changing STATUS)
 swapf wsave,W
 retfie ; Return from interrupt

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Interrupts

2013-03-06 www.melabs.com 261

6.5.3 Example ISR Framework for the 14-Bit Instruction Set:

' Define interrupt handler label
DEFINE INTHAND myint

wsave VAR BYTE $70 SYSTEM ;wsave in access RAM
ssave VAR BYTE BANK0 SYSTEM
psave VAR BYTE BANK0 SYSTEM

GOTO main ' Jump over the interrupt

handler

' Assembly language interrupt handler
ASM
myint

if CODE_SIZE <= 2 ; If less than 2K code space
; Save the state of critical registers (PIC12/PIC16)
 movwf wsave ; Save W
 swapf STATUS,W ; Swap STATUS to W (swap avoids

changing STATUS)
 clrf STATUS ; Clear STATUS
 movwf ssave ; Save swapped STATUS
 movf PCLATH,W ; Move PCLATH to W
 movwf psave ; Save PCLATH
endif

 ;Handler code here

; Restore the state of critical registers (PIC12/PIC16)
 movf psave,W ; restore PCLATH
 movwf PCLATH
 swapf ssave,W ; restore STATUS
 movwf STATUS
 swapf wsave,F ; restore W (swap avoids

changing STATUS)
 swapf wsave,W
 retfie ; Return from interrupt

ENDASM

main: ' Begin main program here

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

262 www.melabs.com 2013-03-06

Chapter 7: Advanced Techniques and Concepts

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 263

7.1 In-Line Assembly Language
In-line Assembly Language in your PBP program is only useful in specific
circumstances. The practice is most commonly used for interrupt service routines.
You should be reluctant to use Assembly Language, as it adds a layer of
complexity that will make it more difficult to debug your program and to port your
program to different PIC MCUs.

Note that Assembly Language is NOT REQUIRED to change the internal registers
in the PIC MCU. Registers may be read and written at will, in BASIC, using PBP's
Direct Register Access.

Before writing in-line Assembly Code, see section 7.2 Code Pages and RAM
Banks. Assembly Language syntax is not covered in this manual. See the
documentation provided with the assembler application and the device datasheet
for syntax and programming information.

7.1.1 Inserting Assembly Code

PBP programs may contain a single line of assembly language preceded by an "at"
symbol (@), or one or more lines of assembly code preceded by the ASM keyword
and ended by the ENDASM keyword. Both keywords appear on their lines alone.

@ bsf PORTA, 0
ASM
 bsf STATUS,RP0
 bcf TRISA, 0
 bcf STATUS, RP0
ENDASM

The lines of assembly are copied verbatim into the assembly output file. This allows
the PBP program to use all of the facilities of the assembler. This also, however,
requires that the programmer have some familiarity with the PBP libraries. PBP’s
notation conventions are similar to other commercial compilers and should come as
no shock to programmers experienced enough to attempt in-line Assembly.

All identifier names defined in a PBP program are similarly defined in Assembly, but
with the name preceded with an underscore (_). This allows access to user
variables, constants, and even labeled locations, in assembly:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

264 www.melabs.com 2013-03-06

B0 Var Byte
ASM
 movlw 10
 movwf _B0
ENDASM

Thus, any name defined in assembly starting with an underscore has the possibility
of conflicting with a PBP generated symbol.

PBP will not be aware of variables that you define in Assembly Language. To avoid
conflict and allow PBP to effectively manage RAM allocation, variables should be
declared in BASIC (even if they are only used in Assembly).

Just as underscored symbols have possible conflicts, so do symbols not starting
with underscores. The problem is internal library identifiers. Luckily, most library
identifiers contain a '?' or make reference to one of the working registers (such as
R0). Avoiding such names should reduce problems. If you should have a name
collision, the assembler will report the duplicate definitions as an error.

In BASIC code, comments may be denoted using either an apostrophe or
semicolon. In Assembly Language, only a semicolon is recognized as a comment
character.

' PICBASIC PRO comment
; Assembly Language comment

7.1.2 Placement of In-line Assembly

PBP statements execute in order of their appearance in the source. The
organization of the code is as follows: Starting at location 0 (the reset vector) PBP
inserts some startup code, followed by a jump to INIT. Next, the called-for library
subroutines are stuffed in. At the end of the library is INIT, where any additional
initialization is completed.

Finally, at the label MAIN, the compiled PICBASIC PRO statement code is added.
The first executable line of program code appears in memory right behind the
controller’s startup and library code, right after the MAIN label.

The tendency of programmers is to place their own Assembly library functions
either before or after their code. There are a couple of deciding factors as to where
might be the best place to insert assembly language subroutines. If the entire
program fits into one code page, place your assembly routines after your PBP
code. If the program is longer than one code page, it could make more sense to
put the assembly language routines at the beginning of the PBP program. This

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 265

should ensure them of being in the first code page so that you know where to find
them. This is the way assembly language interrupt routines should be handled.

If the routines are placed at the front, use a (BASIC) GOTO to jump over the code
to the first executable PBP statement. If you place the routines at the end of your
program, take appropriate steps to make sure the routines do not execute
unintentionally.

The actual code for the assembly language routines may be included in your
program or in a separate file. If a routine is used by only one particular PICBASIC
PRO program, it would make sense to include the assembler code within the PBP
source file. This routine can then be accessed using the CALL command.

If it is used by several different PBP programs, a separate file containing the
assembly routines can simply be included at the appropriate place in the PICBASIC
PRO source:

ASM
 Include "myasm.inc"
ENDASM

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

266 www.melabs.com 2013-03-06

7.2 Code Pages and RAM Banks
In some PIC MCUs, the program code space is divided into "pages". In all PIC
MCUs (that we have seen to date), RAM is divided into "banks".

One of the advantages of using a high-level language like PBP is that these things
are managed for you. If you use PBP's native methods for writing code, declaring
and accessing variables, and accessing registers, you needn't give a thought to
code-page and bank settings.

There is one command that is an exception to this. PBP's
BRANCH command is not capable of jumps that cross code-page
boundaries. If you see a warning during assembly that
indicates "crossing code-page boundary", make sure any BRANCH
commands are replaced with BRANCHL.

PBP also offers the capability of inserting Assembly Language into your program.
When this technique is used, consideration must be given to bank and code-page
selection.

We make the assumption that users who choose to use Assembly Language know
that language. Therefore, we won't go into Assembly Language techniques in this
manual. This section is provided to give Assembly Language programmers the
information necessary to manage code-page and bank selection in their code.

The commands and directives that provide a transition between BASIC and
Assembly Language are ASM/ENDASM, @ and to some extent
#CONFIG/#ENDCONFIG. They are described in other parts of this manual.

When one of these commands is used to begin a block of Assembly Language
code, the code-page selection is not changed by PBP. It must be set to point to the
code-page in which the first instruction of the Assembly code is placed.

The implication here is that, unless an ASM block is placed at the beginning of the
program, you don't know which code-page is selected when entering the Assembly
Language. The Assembly code should check and maintain code-page selection as
necessary, especially when executing branch or goto instructions.

The best way to simplify this situation is to always place ASM blocks at the
beginning of the code. This will insure that the code starts in code-page 0. If you
limit the Assembly to less than 2K of consumed code space, then all of the
Assembly code will be contained in the first code-page. This is especially relevant
to Assembly Language interrupt-handler code.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 267

Banks in RAM are handled a bit more actively by PBP. Whenever a block of inline
Assembly Language is entered, PBP sets the bank-select register to BANK0.

This comes into play when you access variables or registers with Assembly
Language code. If you know that the entities you are accessing are in
BANK0/BANKA, you needn't write bank-select instructions. Otherwise, you do.

When declaring variables in PBP, you can use a modifier to force PBP to place the
variables in a specific bank. This is commonly used to place any variables that are
accessed in Assembly Language in BANK0/BANKA.

tick VAR BYTE BANK0 ' Place tick variable in BANK0

See section 2.6 Variables for more information.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

268 www.melabs.com 2013-03-06

7.3 RAM Allocation
In general, it is not necessary to know how RAM is allocated by PBP in the
microcontroller. PBP takes care of all the details so the programmer doesn’t have
to. However there are times when this knowledge could be useful.

Variables are stored in the PIC MCU’s RAM. Refer to the Microchip PIC MCU data
books for the actual location of the start of the RAM registers for a given
microcontroller.

The variables are assigned to RAM sequentially in a particular order. The order is
LONG arrays first (if any), followed by WORD, BYTE and BIT arrays. Space is then
allocated for LONGs, WORDs, BYTEs and individual BITs. BITs are packed into
bytes as possible. This order makes the best use of available RAM. (For PIC18
devices, arrays are allocated last.)

Arrays must fit entirely within one RAM bank on 12-bit, 14-bit or PIC17 devices.
Arrays may span banks on PIC18 devices. Byte-, word- and long-sized arrays are
only limited in length by the amount of available memory on PIC18 devices. The
compiler will assure that arrays, as well as simple variables, will fit in memory
before successfully compiling.

You can suggest to PBP a particular bank to place the variable in:

penny VAR WORD BANK0
nickel VAR BYTE BANK1

If specific bank requests are made, those are handled first. If there is not enough
room in a requested bank, the first available space is used and a warning is issued.

You can even set specific addresses for variables. In most cases, it is better to let
PBP handle the memory mapping for you. But in some cases, such as storage of
the W register in an interrupt handler, it is necessary to define a fixed address. This
may be done in a similar manner to bank selection:

wsave VAR BYTE $70

Several system variables, using about 24 bytes of RAM, are automatically allocated
by the compiler for use by library subroutines. These variables are allocated in the
file PBPPIC14.RAM and must be in bank 0 (bank A on PIC18 devices).

In the generated code, user variables are prepended with an underscore (_) while
system variables have no underscore so that they do not interfere with each other.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 269

R0 VAR WORD SYSTEM

BASIC Stamp variables B0 - B25 and W0 - W12 are not automatically allocated. It
is best to create your own variables using the VAR instruction. However if you
want these variables to be created for you, simply include the appropriate file,
BS1DEFS.BAS or BS2DEFS.BAS, at the beginning of the PICBASIC PRO
program. These variables allocate space separate and apart from any other
variables you may later create. This is different than the BS2, where using the
canned variables and user created variables can get you into hot water.

Additional temporary variables may be generated automatically by the compiler to
help it sort out equations. A listing of these variables, as well as the entire memory
map, may be seen in the generated .ASM or .LST file.

If there is not enough RAM memory available for the variables, an unable to fit
variable in memory error message will be issued.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

270 www.melabs.com 2013-03-06

7.4 MPLAB® Development Environment
At the time of this writing, Microchip is in transition from MPLAB to MPLABX. To
get the latest information and details for installing PBP as a language tool within
these environments, see the support section of our website, www.melabs.com.

PBP may be installed as a language tool with Microchip's MPLAB IDE. This offers
the use of PBP as a programming language while working in MPLAB and most
debugging tools that are integrated in MPLAB will work at the source level. This
means that you can set breakpoints and control the program execution in the
BASIC program code, instead of Assembly Language.

MPLAB is a project-oriented environment. You will need to create a project in order
to experience the Microchip workflow. Once a project is created with the PBP
language tool selected, the Microchip debugging tools should work as described in
Microchip's documentation.

7.4.1 Debugging Tool General Considerations

When using a hardware debugging tool like Microchip's ICD3 or Real ICE, there are
associated limitations and resource requirements to consider. Software tools like
MPLAB SIM are not subject to these requirements. The general considerations
when using a Microchip hardware debugging tool with PBP are:

• The MCLR pin is reserved for debugging, so you cannot use this pin as
digital I/O while debugging.

• The programming clock and data pins (RB6 and RB7 on many devices)
are reserved for programming and in-circuit debugging. Therefore, other
functions multiplexed on these pins will not be available during debug.

• One stack level is used by the debugger. This will reduce the stack levels
available to your PBP program. See section 8.1.14 Hardware Stack for
more information.

7.4.2 Debugging Tool Device-Specific Considerations

For each PIC MCU family, Microchip's in-circuit debugging tools (ICD3, Real ICE,
etc.) require specific memory locations to be reserved for proper use. The exact
requirements for each device family are detailed in the MPLAB help files for the
debugging tool.

If you encounter a requirement for the first location of Program Memory to be
reserved, you may use the following DEFINE in your PBP program. There is no

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 271

known harm in using this define, even if it isn't specifically called for, so you may
safely add it if you aren't sure if it's needed.

DEFINE ICD_USED 1 ' Place a nop in location-0 of
Program Memory

Most devices will require a few locations at the end of Program Memory and some
specific RAM locations to be reserved. As an example, consider the following
information found in the ICD2 help file for the PIC16F88.

Device Program Memory Used File Registers Used

PIC16F88 0xF00-0xFFF

0x070
0x0F0
0x170
0x1E7-0x1F0

For the PIC16F88, the Program Memory requirements are locations 0xF00
through 0xFFF (hex). If you look at the total program memory available for the
PIC16F88, you will notice that these locations are at the very end of the available
space. This is the norm for debugging requirements in PIC MCUs.

PBP doesn’t offer a specific method of reserving locations at the end of code space
because it isn't possible. If your program extends into these locations, reserving
them would leave no place for the program code to be displaced to, resulting in
errors. The only way to keep these locations free is to make sure that your
program doesn't extend into them. This is rarely a problem, except when a
program consumes every available location of code space.

The RAM, or File Register, requirements are a bit more involved. For the
PIC16F88, we see that RAM locations 0x070, 0x0F0, 0x170, and the range 0x1E7
through 0x1F0 are required.

Reserving these RAM locations is simply a matter of assigning dummy variables
that occupy the space. As long as you don't use these variables in your PBP
program, the locations can be considered "reserved". In this case, we would
reserve the locations with the code:

ICDRESERVED1 VAR BYTE $70
ICDRESERVED9 VAR BYTE(9) $1E7

You will notice that locations 0x0F0 and 0x170 are not included in the example.
This is because those locations are not available to PBP as general-purpose RAM
to begin with. Since they can't be used by PBP, they are inherently reserved. The
status of these locations could be gleaned from the datasheet, but the shortcut is to

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

272 www.melabs.com 2013-03-06

attempt to define them and then remove them if you receive a compile error –
assuming that you haven't declared variables at these locations elsewhere in your
program.

The ICDRESERVED9 variable is declared as an array, starting at location 0x1E7
and spanning 9 bytes. This reserves the range 0x1E7 through 0x1F0.

In the PBP install folder, you will find some files named icddefs*.bas. These are
example files for reserving ICD resources for specific devices (listed in the
comments within each file).

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 273

7.5 Hardware Stack
Each PIC MCU utilizes a hardware call stack to save return addresses. The stack
is a small area of memory that functions as a list to which addresses are saved
before calling a subroutine or interrupt handler. These saved addresses are then
used to return to the previous address after the subroutine or interrupt handler
executes. Each address is removed from the stack upon return, leaving room for a
subsequent call.

The number of locations available for the stack is limited by a different amount for
each instruction set family of PIC MCU. The limit is also referred to as the "depth"
of the stack. PBP uses a few levels of stack to work its magic, leaving a limited
number of stack levels available for the user's program.

Instruction Set Total Stack Available Stack
12-Bit N/A – PBP

creates
4

14-Bit 8 4
14-Bit Enhanced 16 12
16-Bit 31 26

When you use GOSUB to call a subroutine in your program, one level of stack will
be occupied with a return address while the subroutine executes. That level will be
vacated upon execution of the RETURN statement at the end of the routine.

If you leave the subroutine without executing a RETURN, an "orphaned" address
will be left on the stack. If you enter a subroutine with some other method besides
GOSUB, and a subsequent RETURN is then executed, an unexpected address is
removed from the stack (and used to resume program execution). Either of these
circumstances will leave the stack in a corrupted state. You may observe
unexpected behavior that is seemingly random and very difficult to debug.

Make sure each GOSUB results in a RETURN being executed, and that your
RETURNs can't be executed without a preceding GOSUB.

If you use GOSUB from within a subroutine that was called with a GOSUB, we call
that a "nested" GOSUB. Two levels of stack will be occupied while the second
subroutine executes. If you nest GOSUBS three levels deep, then 3 levels of stack
must be available. Nesting too deeply and overrunning the available stack will
cause the afore-mentioned unexpected behavior that is seemingly random and very
difficult to debug.

Avoid nesting GOSUBs too deeply, especially in devices with a very limited stack
depth.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

274 www.melabs.com 2013-03-06

Since interrupts utilize stack memory, you should consider an extra level of stack to
be unavailable when you write a program the uses interrupts.

Debugging with a Microchip tool like the ICD3 will also use up one level of stack.

The directive ON INTERRUPT will enable interrupts and one level of stack will be
consumed.

The only PBP commands that are cause for concern when nesting are GOSUB and
CALL. All other PBP commands may be nested with no stack concerns and no
practical limit.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 275

7.6 Array Handling Mechanism
Array variables in PBP are written with square brackets ([]) to enable an index
value to point to an element in an array.

my_array[15] = 0 ' Write zero to element-15 of
my_array

At first glance, this seems simple and straightforward, but there is a much larger
story behind the use of indexes enclosed in brackets.

Actually, a better term than index would be "offset". You can write a bracketed
value next to just about any memory entity in PBP and the value will be treated as
an offset to the real memory-address of the entity.

my_var VAR BYTE ' Declare a scalar byte variable

my_var[15] = 0 ' Write to a RAM location that

is offset 15 locations from
where my_var is allocated

7.6.1 The Danger

The techniques about to be discussed are not monitored by PBP during compilation
or execution of the program. This means that you can write some crazy code that
could totally wreck the RAM on the PIC MCU. PBP won't warn you or generate an
error message.

The greatest opportunity for trouble lies in the fact that PBP doesn't monitor (isn't
even aware) of array variable sizes. When you declare an array in PBP and specify
a size, all that really happens is that PBP skips a number of RAM locations after the
base variable name is allocated.

my_array VAR WORD[16] ' Allocates "my_array" as two
bytes, then skips (reserves) a
block of 30 bytes in RAM

Even if you blatantly write to a location that is beyond the size of an array you
created, PBP won't complain.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

276 www.melabs.com 2013-03-06

my_array VAR WORD[16]

my_array[87] = 0 ' Not good

This will zero a RAM location outside of your declared array. It will probably wreck
another variable in your program, and PBP won't say a word about it.

When accessing arrays using variables for index values, it is always good practice
to place limits on the values to inhibit them from pointing to locations that aren't
within the array.

my_array VAR WORD[16] ' Declare array locations 0
through 15

IF x > 15 THEN error_1 ' Check the index variable to
see if it's within the array

my_array[x] = 0 ' Only allow access if index is
valid

If you're asking why PBP doesn't monitor such things, there are two good answers.
The first is that it's impossible for PBP to know run-time values of index variables
and the insertion of automatic validation code would consume a lot of resources.
The second answer is that performing such checks would inhibit the cool stuff that
follows.

7.6.2 Brackets Perform Offsets

Variable names (and alias names) in PBP represent two things to the compiler.
Each name represents an address where the least-significant element is stored in
RAM, and an entity-type that determines how PBP will treat the entity in
subsequent encounters.

When writing any name that represents an entity in RAM (including SFRs), you can
follow the name with brackets. The expression within the brackets will be treated
as an offset in memory. For example, consider the following:

x = 15
FOO[x] = 0

Without knowing exactly how FOO is declared, all that we can truthfully state is that
a location at address (FOO + 15) will be set to zero. The step value of the 15-
address offset will be the same as the entity-type associated with the name FOO. If
FOO is a BIT, a bit that is 15 bits higher in RAM will be set to zero. If FOO is a
WORD, a word that is 15 words higher in RAM will be set to zero. (If the entity-type
is BIT, the offset value is limited to 255.)

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 277

PBP doesn’t' know and doesn't care whether you've declared FOO as an array. It
simply sees the bracketed offset value and the entity-type and inserts code to
calculate a new address.

This is only useful if you know what lies at the offset RAM location ahead of time.
The best way to know is to define something ahead of time.

7.6.3 Sub-Arrays within Arrays

Consider the following variable declarations:

all_data VAR BYTE[48] ' Array for all my data
samples VAR all_data[0] ' 16 bytes for ADC samples
calcs VAR all_data[16] ' 16 bytes for calculated values
readings VAR all_data[32] ' 16 bytes for port readings

The intent is to create arrays for samples, calcs, and readings, but to make them
subsets of the all_data array. Even though samples, calcs, and readings are only
declared as aliases to single elements of all_data, they can still be accessed as
arrays by slapping on a bracketed offset value:

FOR x = 0 TO 15
 ADCIN 0, samples[x] ' Store ADC sample
 calcs[x] = samples[x]/3 ' Store calculated value
 readings[x] = PORTC ' Store port reading
NEXT x

Now we've stored data into three arrays. Let's say that the application requires that
all three arrays must be sent to a data-logging device with an HSEROUT
command. Since the all_data array contains all three sub-arrays, you can write:

HSEROUT [STR all_data\48] ' Send all the data

The all_data array could be expanded to hold multiple scalar variables, also. In this
example, though, all the variable types will end up as BYTEs.

7.6.4 Accessing Arrays as Multiple Variable-Types

It is possible for a single array to be declared with multiple names and for each
name to be assigned a different variable type. Note that offsets for BITs are limited
to a maximum value of 255.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

278 www.melabs.com 2013-03-06

In order to declare an array that can be accessed as both WORDs and BYTEs, the
larger variable type must be declared first, then an alias to a modified element is
declared.

my_words VAR WORD[16]
my_bytes VAR my_words.BYTE0 ' Enable BYTE access to the

my_words array.

The example above creates a single array in memory that can be accessed in two
different ways. With the name "my_words" the array can be accessed as 16
WORD values. With the name "my_bytes", the array can be accessed as 32 BYTE
values.

One reason to do this is that PBP doesn't allow the following syntax to access a
BYTE portion of a WORD array element:

my_words[x].BYTE0 = 0 'COMPILE ERROR

The long work around for this is to move the value into a temp variable, manipulate
it, then restore it to the array:

temp = my_words[x]
temp.BYTE0 = 0
my_words[x] = temp

If, however, the array can be accessed as both BYTEs and WORDs, you can write:

my_bytes[x*2] = 0 ' my_words[x].BYTE0
my_bytes[(x*2)+1] = 0 ' my_words[x].BYTE1

Modifiers like BYTE0 change the variable type that PBP perceives when an alias is
declared. When we write "..VAR x.BYTE0", PBP will always typecast the alias as
a BYTE, regardless of the variable type of "x".

The first element (element-0) of an array can be referenced without an index value.
"my_words[0]" is the same as "my_words".

One last bit of information that is implied above: You can write aliases to other
aliases. In the above example, you could create a name for a BYTE variable at the
end of the array with:

last_byte VAR my_bytes[31]

This works even though "my_bytes" is, itself, an alias.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Advanced Techniques and Concepts

2013-03-06 www.melabs.com 279

7.6.5 Applying Offsets to Bits within a Variable or Register

Another powerful result of the array-handling mechanism in PBP is that offsets may
be applied to bits when accessing RAM entities. The application for this is most
often associated with the need to choose a pin on a port using a variable value, but
it also works for accessing bits within variables.

The individual bits within a port register are normally accessed with a period and
number after the name of the register:

PORTB.0 = 1 ' Set RB0 high

But, if you need to choose the pin with a variable value, it's illegal to write:

PORTB.x = 1 ' COMPILE ERROR

The array mechanism in PBP offers a solution. An offset enclosed in brackets may
be written after the bit number:

PORTB.0[x] = 1 ' Set RBx high

The actual effect of this is to add the value of x to the numeric bit number.

x = 2
PORTB.4[x] = 1 ' Set bit(4+x) high. In this

case, bit-6 is set.

NOTE THAT PBP COMMANDS WON'T ACCEPT THIS SYNTAX for command
parameters. This method can only be used in expressions and with direct register
access. You CANNOT write:

HIGH PORTB.0[x] ' COMPILE ERROR
COUNT PORTB.0[x], 100, y ' COMPILE ERROR

When using this method, PBP will allow an offset value up to 255. As discussed
before, there is no built-in protection against accessing bits that are beyond the
scope of the parent entity. If you overflow the bits within the parent entity, PBP will
access bits in the next higher location of memory.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Appendixes

280 www.melabs.com 2013-03-06

Chapter 8: Appendixes

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

2013-03-06 www.melabs.com 281

8.1 Debugging and Troubleshooting
There are several areas of programming for PIC MCUs that are commonly
overlooked, especially by beginners. It is impossible to list all the details for all the
hundreds of devices supported by PBP, but this section will try to give you some
direction.

8.1.1 Configuration

See #CONFIG. Incorrect configuration of the target MCU can stop the MCU from
running. It can also cause unexpected behavior.

Make sure the oscillator is configured correctly. External crystals with frequencies
greater than 4MHz need a "High Speed" setting (HS). If you plan for the chip to run
without an external oscillator source, make sure the oscillator configuration is set so
that the internal oscillator is selected.

Low Voltage Programming should be disabled. If this is enabled and the LVP pin is
left floating, the device may start and stop for no apparent reason.

Disable Extended Instruction Set. PBP doesn't use the extended instructions.
Bizarre behavior has been observed when enabled.

Other configuration settings may need to be changed to match your intent and your
hardware design.

8.1.2 Initializing values

Upon program startup, you should expect values in variables to be random. They
will not be zeros or any other predictable value. If your program depends on a
starting value for any variable, you must set that value at the beginning of your
program.

The same is true for port output values. Don't assume that outputs will be in a low
state upon startup. Initialize all PORT and GPIO values explicitly.

8.1.3 DEFINE OSC

DEFINE OSC tells PBP what system clock frequency to expect. Without it, PBP
assumes that a 4MHz clock is in use. If the actual frequency is different than the
frequency PBP expects, all timed commands in PBP will give incorrect results.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

282 www.melabs.com 2013-03-06

Play it safe and always use DEFINE OSC.

DEFINE OSC 4 ' Compile for 4MHz clock

8.1.4 Analog Inputs

If there are analog inputs for converters and/or comparators on the target MCU,
they will usually default to analog mode on the pins. This will interfere with digital
operations performed on pins that also function as analog inputs. For digital use of
pins with analog options, you must find and set a register to select digital mode for
the pins.

Here are a few examples for a handful of MCUs, but remember that PBP supports
more than 400 different devices. Don't assume that the settings are consistent from
one device to the next.

ANSEL = %00000000 ' 16F88, 16F688, 16F690, 16F88x
ANSELH = %00000000 ' 16F690, 16F88x
ADCON1 = %00000111 ' 16F87x, 16F87xA, 18F452
ADCON1 = %00001111 ' 18F4620

In the Microchip datasheet for the specific device you are using, the analog/digital
selection will be located either in the I/O Ports section or the Analog/Digital
Converter section. Common register names are ANSEL, ANSELH, ANSELA-
ANSELG, ANCONx, ADCONx.

These settings are important. Save yourself some time and search the datasheet.

8.1.5 Internal Oscillator

A lot of devices are equipped with an internal oscillator, and these are widely used
for convenience and to save component cost. In many cases, though, there are
register settings that are needed to get the expected behavior from the internal osc.

Many parts have a register which selects the frequency of the internal osc. This is
usually covered in the datasheet under Oscillator Configuration.

OSCCON = $70 ' Set internal to 8MHz for
PIC16F88

Older devices may need a calibration process in order for the internal oscillator to
be accurate.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

2013-03-06 www.melabs.com 283

DEFINE OSCCAL_1K 1 ' Calibrate internal osc for
PIC12F675

8.1.6 Read-Modify-Write

Changing the state of an output pin on a PIC MCU is not a simple one-way
operation. Even though you're writing to a single bit on a port, the operation starts
with a read of the entire port. Consider the simple example:

PORTB.0 = 1

The MCU makes this happen by reading all pins in PORTB, changing the Bit-0
value per your command, then writing all the bits back to the port. This is
transparent as long as all of the pins on PORTB can be read correctly, but
sometimes they can't.

Keep in mind that when the state of the pin is changed, the actual voltage will not
change instantaneously. In a good situation, the voltage will change within one
instruction cycle after commanded… perhaps with a 50nS delay. But, if the pin is
affected somehow by its external connection, the voltage could be delayed much
longer.

Problems can arise when the individual pins on a single port are changed in rapid
succession:

PORTB.0 = 1
PORTB.1 = 0
PORTB.7 = 1

The microcontroller executes these commands VERY quickly. When the last line is
executed to set the PORTB.7 pin, all the pins on PORTB are read and rewritten. If
pins 0 and 1 haven't had time for the actual voltage to change, the states of these
pins will be incorrectly read and then rewritten with the incorrect value.

The PIC18 family devices offer an alternative register that is immune to this
phenomenon. In these parts you can write:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

284 www.melabs.com 2013-03-06

LATB.0 = 1
LATB.1 = 0
LATB.7 = 1

Another approach would be to write the register as a single value. The concern
here is the PORTB pins we haven't mentioned (2 through 6). If these pins are
inputs or if you don't care about their output states, simply set them to zeros when
writing the port:

PORTB = %10000001 ' pin0=1, pin1=0, pin7=1

You may also be able to change the order of the settings so that slow-reacting pins
are set last. Delays could be placed after settings to slow-reacting pins. You could
also address this in the design stage, by placing pin connections on different ports.

8.1.7 Data Direction

All I/O pins on all PIC MCUs are configured as inputs by default. In order for a pin
to be used as an output, a data-direction register must be changed.

PBP's HIGH, LOW, and TOGGLE commands change the data-direction to output
automatically, but they do it every time they are executed. This can needlessly use
instruction cycles.

It is a simple matter to change data-direction. This is usually done in an
initialization section that is written near the top of the program. After the data-
direction is set once, it won't change unless something in your program affects it.

init:
 TRISB = %11111011 ' All PORTB pins inputs except

PORTB.2
main:
 PORTB.2 = 1 ' Set PORTB.2 high
 PAUSE 500 ' Pause half second
 PORTB.2 = 0 ' Set PORTB.2 low
 PAUSE 500 ' Pause half second
GOTO main

If using aliases to name pins and you don't want to set the data-direction register by
name, you can use PBP's INPUT and OUTPUT commands to automatically
determine the data-direction register and set it.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

2013-03-06 www.melabs.com 285

led VAR PORTB.2 ' Alias name for pin

init:
 OUTPUT led ' Make led an output pin

main:
 PORTB.2 = 1 ' Set PORTB.2 high
 ..

8.1.8 Analog Conversion

If your ADCIN command is misbehaving, there are probably some register settings
that will help. All of the following can be found in the Analog/Digital Converter
section of the datasheet for your specific part. Don't assume that one part works
exactly like another.

The MCU always stores the result of an analog conversion in a 16-bit register pair.
If "DEFINE ADC_BITS 8" is used, PBP takes a shortcut and only reads the most
significant byte of the result. Microchip has accommodated this by LEFT-
JUSTIFYING the result in the register pair by default.

However, when ADC_BITS is defined as greater than 8, PBP will read all 16-bits of
the register pair. For the result to be correct without a subsequent shift operation,
you can tell the chip to RIGHT-JUSTIFY the result. Here are a couple of examples
that come with our standard warning… Don't assume that one part works exactly
like another! Check the datasheet.

ADCON1.7 = 1 ' Right-justify ADC result for
PIC16F877

ADCON0.7 = 1 ' Right-justify ADC result for
PIC12F683

Another common issue that affects ADCIN is the ADC clock setting. You should
use "DEFINE ADC_CLOCK" to set a number that corresponds to the desired
setting from the datasheet, but some devices defy PBP's attempts to translate the
define. It's always safe to use a register setting in addition to the define:

DEFINE ADC_CLOCK 3 ' Inoperative on PIC16F887
ADCON0 = %11000000 ' Set ADC_CLOCK for PIC16F887

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

286 www.melabs.com 2013-03-06

8.1.9 I/O pin parameters and limitations

On a PIC microcontroller, not all pins are created equal. Some pins have more
current-capability than others. Some are built as open-drain drivers. Some can
only be used as input.

The datasheet for the specific device you are using will have the details.

8.1.10 Piggybacked pin functions

Most pins on most PIC MCUs will have multiple functions available. In some cases,
a "piggybacked" function of a pin will interfere with the pin's function as a normal,
digital I/O (as in the previously discussed case of analog inputs).

If a pin is behaving unexpectedly, check the pin's description in the datasheet for
the specific device that you are using. You may need to do some digging in the
datasheet to find descriptions of each function assigned to the pin. Look to the
default register settings (reset states) to determine how the pin is configured.

An example of this is encountered on some small MCUs of the 12-bit instruction set
variety (PIC10 and some PIC12). On these devices, the pin GPIO.2 is forced to an
input due to its function as a timer/counter clock input. To disable this function and
allow the pin to work as a normal, digital I/O, you would set bit-5 in OPTION_REG
to zero:

OPTION_REG.5 = 0

8.1.11 Pin Relocation and Defines

Some PIC MCUs offer options to move hardware peripheral I/O from one pin to
another. For the PBP commands that depend on these hardware peripherals, PBP
needs to be told where you've assigned the pin. If the hardware peripheral I/O on
the MCU you've chosen cannot be relocated, PBP will automatically use the pin
location that is available and no additional defines are required.

The most common example is related to PBP's HPWM command. On most PIC
MCUs, the output for this command is limited to a few channels on dedicated pins
that can't be relocated (CCP channels). On some devices, however, a single CCP
channel can be relocated. This occurs on the PIC16F88, where CCP1 can be
configured to output on PORTB.0 or PORTB.3. For this situation, PBP needs a
DEFINE in order to know where the HPWM will be output. This DEFINE doesn't
affect the actual configuration, it only tells PBP which configuration to expect.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

2013-03-06 www.melabs.com 287

DEFINE CCP1_REG PORTB ' Locate CCP1 port and bit
DEFINE CCP1_BIT 3

These defines will be listed in the associated command pages. More information
for the example above can be found in the HPWM section.

8.1.12 Omitting parentheses

While most users realize the importance of parentheses in mathematical
expressions, a common mistake is to omit parentheses in logical expressions. It's
important to realize that, without parentheses, the logic can be interpreted
differently: Consider this example:

IF x = 0 AND y = 0 OR z = 0 THEN label

The conditional here is ambiguous, at best. It should be written with parentheses to
make clear the intent. Here are two ways to write it that give entirely different
results. To illustrate the point, try to decide which one will give the same result as
the above example:

IF ((x = 0) AND (y = 0)) OR (z = 0) THEN label
IF (x = 0) AND ((y = 0) OR (z = 0)) THEN label

Parentheses are strongly encouraged in all expressions, be they mathematical,
comparison, bitwise, logical, or any combination.

8.1.13 Channel numbers vs. pins

Some commands, like ADCIN and HPWM, use channel numbers instead of port.pin
descriptions. A common mistake is to write the port.pin instead of the channel. .

ADCIN PORTA.0, adc_result ' DON'T DO THIS

The above example will read the digital state of PORTA.0, then perform an analog
conversion on either channel-0 or channel-1, depending on what it received for
state data. If the intent is to perform ADCIN on channel-0, the correct syntax is:

ADCIN 0, adc_result

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Debugging and Troubleshooting

288 www.melabs.com 2013-03-06

8.1.14 Hardware Stack

Too many nested GOSUBs, or entering and exiting subroutines incorrectly may
corrupt the hardware call stack on the PIC MCU. This can cause unexpected
resets and some intermittent bizarre behavior.

See section 7.5 Hardware Stack for more information.

8.1.15 Overrunning Array Variables

When you declare an array variable with 16 elements, those elements are
numbered 0-15. Writing to element-16 will write to a memory location beyond the
end of the memory reserved for the array.

Because of the open-ended nature of the array variable handling in PBP, an error
will not be reported if you write data past the end location of an array variable that
you have declared.

my_array VAR BYTE[16]
my_array[24] = 0 'No error, but results in

corrupted memory

It is good practice to write in limits when accessing arrays with variable indexes.

my_array VAR BYTE[16]

my_array[x MIN 15] ' Limit index expression to

maximum value of 15
my_array[x & $0F] ' Use a bitwise mask to limit

See section 7.6 Array Handling Mechanism for more information.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

12-Bit Instruction Set Considerations

2013-03-06 www.melabs.com 289

8.2 12-Bit Instruction Set Considerations
Because of the architecture of the 12-bit instruction-set PIC MCUs, programs
compiled for them by PBP will, in general, be larger and slower than programs
compiled for the other PIC MCU families. In many cases, choosing a device from
one of these other families will be more appropriate. However, many useful
programs can be written and compiled for the 12-bit instruction set.

The two main programming limitations that will most likely occur are running out of
RAM memory for variables and running past the first 256 word limit for the library
routines. These limitations have made it necessary to eliminate some compiler
commands and modify the operation of some others.

The compiler for 12-bit instruction set uses between 20 and 22 bytes of RAM for its
internal variables, with additional RAM used for any necessary temporary variables.
This RAM allocation includes a 4 level software stack so that the BASIC program
can still nest GOSUBs up to 4 levels deep. Some PIC MCU devices only have 24
or 25 bytes of RAM so there is very little space for user variables on those devices.
If the Unable to Fit Variable error message occurs during compilation, choose
another PIC MCU with more general purpose RAM.

PIC MCUs with the 12-bit instruction set can call only into the first half (256 words)
of a code page. Since the compiler's library routines are all accessed by calls, they
must reside entirely in the first 256 words of the PIC MCU code space. Many
library routines, such as I2CREAD, are fairly large. It may only take a few routines
to overrun the first 256 words of code space. If it is necessary to use more library
routines than will fit into the first half of the first code page, it will be necessary to
move to a 14- or 16-bit instruction set instead of the 12-bit.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBPX Command Line Operation

290 www.melabs.com 2013-03-06

8.3 PBPX Command Line Operation
PBPX <Options> <Filename>

Options:
-h or -? Display command line help on the screen.
-n Enable LONG variables for PIC18. (PBPL)
-p<pic> Specify target MCU. [-p18F4620]
-a<assembler> Specify assembler executable. [-aMPASMWIN]
-o<asm param> Pass command line parameter to assembler. [-os]
-k+ or -k# Add source-level debugging information (COFF).
-k- Add assembler-level debugging information (COFF).
-c Insert source comments into compiled output.
-s Suppress assembler (compile only).
-v Verbose mode.
-i Set include paths.
-l<library> Use alternate library. [-lPBPPIC18.LIB]
-d<user #DEFINE> User-created #DEFINE [-dFOO]

Although most users will depend upon an integrated development environment
(IDE) to control PBP, under the hood it remains an application that is operated by
the use of command-line parameters (aka switches).

This section is intended to guide those who need to operate PBP from the
command line and those who wish to install PBP as a language tool within their
favorite, generic IDE or program editor.

This information is only applicable to PBP3 and later versions. Older versions of
PBP use different executable filenames and may use different parameters.

The name of the PBP executable is PBPX.EXE.

Before launching PBPX, the location of the assembler executable should be placed
in an environment variable named PBP_MPASM.

Before launching PBPX, the working directory should be set to the location of the
source program files.

The slash (/) character may be used instead of the dash. Multiple command-line
options may be separated by a space. However, no space should intervene
between an option and its argument. Multiple options of the same type may be
used.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBPX Command Line Operation

2013-03-06 www.melabs.com 291

With the working directory set to the source folder location, PBPX must be invoked
with the full path to its install location. For other install locations, substitute the real
path in the examples that follow.

Usage: <path>\PBPX <Options> <Filename>

Options:

-h or -? -h

When used, will override all other parameters and will cause PBPX to return a brief
description of command-line options

-n -n

Causes "PBP In LONG Mode" (PBPL) to be invoked. This should only be used for
PIC18 target devices.

-p<pic> -p18F4620 -p18F46K22

Used to specify the target PIC MCU for the compile. The device number should be
given without the "PIC" prefix.

-a<assembler> -aMPASMWIN -aMPASMX

Used to specify the filename of the assembler executable. Should not be used with
full path information (e.g. c:\program files\microchip\mpasm suite\mpasmwin).
Instead, prepend the location of the assembler executable to the system's PATH
environment variable.

-o<asm param> -0q- -os

May be used multiple times on the command-line. The parameter that follows –o is
ignored by PBPX, except that it is passed to the assembler command line preceded
by a slash character. If you write:

-aMPASMWIN –oq –os

The resulting command line that invokes the assembler will include:

MPASMWIN /q /s

-k+ or -k# -k+ -k#

Causes PBPX to rewrite the assembler-created .COF file with source-level
debugging data. The switch is required for source-level debugging in MPLAB.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBPX Command Line Operation

292 www.melabs.com 2013-03-06

-k- -k-

Instructs PBPX to rewrite the assembler-created .COF file with assembly-level
debugging data. Source-level debugging will be disabled in MPLAB, allowing
debugging in Assembly Language.

-c -s

Instructs PBPX to insert BASIC program lines as comments in the generated .ASM
file.

-s -s

Causes PBPX to create the .ASM file, but the assembler will not be invoked.
Cannot be used with –k options.

-v -v

Cause PBPX to return a more detailed report of its actions during compilation.

-i<path> -iC:\PBP\MY_INCLUDES

Instructs PBPX to search the specified path for include files during compilation.
Since spaces are not allowed in the path, this option is of limited use on modern
Windows systems.

-l<library> PBPPIC18.LIB

Instructs PBPX to override the LIBRARY directive found in the .PBPINC file and,
instead, use the library file specified here.

-d<user_#DEFINE> -dFOO

May be used multiple times on the command line. This parameter allows the user
to create the equivalent of a #DEFINE directive from the command line instead of
from the source program. This option may be used multiple times on a single
command line. Spaces are not allowed in the –d text.

Here are some examples of –d usage and their equivalent program code:

-dFOO #DEFINE FOO
-dFOO=1 #DEFINE FOO 1

String constants may not be defined with –d.

Examples of command lines:

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

PBPX Command Line Operation

2013-03-06 www.melabs.com 293

C:\PBP\PBPX -n -p18F4620 -aMPASMWIN -os -k# blink.pbp

Compiles blink.pbp for the PIC18F4620 using PBPL. The MPASMWIN
assembler is invoked with its /s parameter, causing its
progress dialog to close automatically. The COFF file is
rewritten after assembly to accommodate source-level debugging.

C:\PBP\PBPX -p16F88 -aMPASMWIN -k# blink.pbp -dver2

Compiles blink.pbp for the PIC16F88 using the MPASMWIN
assembler.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Specifying Assembler Location with PBP_MPASM

294 www.melabs.com 2013-03-06

8.4 Specifying Assembler Location with PBP_MPASM
As discussed earlier in this manual, PBP must invoke an assembler application to
finish the compile/assembly process. The assembler executable name is set with
the –a command line option. This is usually handled by the IDE in the form of a
compiler option setting.

The location of the assembler folder on the system is held in an environment
variable named PBP_MPASM. This variable holds path location in the form of a
string value. An example is: "C:\Program Files\Microchip\MPASM Suite\"

When launching the assembler, PBP will look first in the location that it finds in the
PBP_MPASM variable. If the assembler executable is not found there, PBP will
continue its search using all locations available in the system's PATH environment
variable.

The PBP_MPASM variable is set automatically after installation of PBP, when the
system is next restarted. The installer will search for the most recent installation of
MPLAB and set the value to the assembler folder within that installation.

If you install a new version of MPLAB in a different path, the PBP_MPASM variable
will need to be updated with the new assembler location. A utility for this may be
found in the Start Menu Program Group for PBP.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

defs Include Files

2013-03-06 www.melabs.com 295

8.5 defs Include Files
Your PBP installation includes some special-purpose files that may be included in
your program code. These files are mostly made up of constant and variable
declaration statements that make PBP more compatible with other (simplified and
limited) languages. Details are most easily found by reading the contents of the
files.

8.5.1 modedefs.bas

INCLUDE "modedefs.bas"

The file modedefs.bas gives names to modes used in commands like
SERIN/SEROUT and SHIFTIN/SHIFTOUT. An example would be the name
"T9600" in the SERIN command. "T9600" is a constant which is defined in
modedefs.bas.

modedefs.bas is not needed for every PBP program. It is only needed for
programs where mode names are used instead of the actual mode numbers. Even
when mode names are used, you have the option of creating the names in your
program instead of including modedefes.bas, which will create many names that
you may not use.

8.5.2 bs1defs.bas

INCLUDE "bs1defs.bas"

The file bs1defs.bas creates a set of variables and aliases with names that are
identical to those pre-defined by the BASIC Stamp (first version, BS1) by Parallax.
These names are also identical to those pre-defined by PICBASIC Compiler (aka
PBC) by melabs.

8.5.3 bs2defs.bas

INCLUDE "bs2defs.bas"

The file bs2defs.bas creates a set of variables and aliases with names that are
identical to those pre-defined by the BASIC Stamp (second version, BS2) by
Parallax.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN2/SEROUT2 Mode List

296 www.melabs.com 2013-03-06

8.6 SERIN2/SEROUT2 Mode List
Common modes for commands SERIN2 and SEROUT2:

Baud Rate Bit 15
(Output)

Bit 14
(Conversion)

Bit 13
(Parity)

Mode Number

300 Driven True None 3313
300 Driven True Even* 11505
300 Driven Inverted None 19697
300 Driven Inverted Even* 27889
300 Open True None 36081
300 Open True Even* 44273
300 Open Inverted None 52465
300 Open Inverted Even* 60657
600 Driven True None 1646
600 Driven True Even* 9838
600 Driven Inverted None 18030
600 Driven Inverted Even* 26222
600 Open True None 34414
600 Open True Even* 42606
600 Open Inverted None 50798
600 Open Inverted Even* 58990
1200 Driven True None 813
1200 Driven True Even* 9005
1200 Driven Inverted None 17197
1200 Driven Inverted Even* 25389
1200 Open True None 33581
1200 Open True Even* 41773
1200 Open Inverted None 49965
1200 Open Inverted Even* 58157
2400 Driven True None 396
2400 Driven True Even* 8588
2400 Driven Inverted None 16780
2400 Driven Inverted Even* 24972
2400 Open True None 33164
2400 Open True Even* 41356
2400 Open Inverted None 49548
2400 Open Inverted Even* 57740
4800 Driven True None 188
4800 Driven True Even* 8380
4800 Driven Inverted None 16572
4800 Driven Inverted Even* 24764
4800 Open True None 32956
4800 Open True Even* 41148
4800 Open Inverted None 49340
4800 Open Inverted Even* 57532

*Parity is odd when DEFINE SER2_ODD 1 is used.
Continued…

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

SERIN2/SEROUT2 Mode List

2013-03-06 www.melabs.com 297

Baud Rate Bit 15
(Output)

Bit 14
(Conversion)

Bit 13
(Parity)

Mode Number

9600 baud may be unreliable with 4MHz clock
9600 Driven True None 84
9600 Driven True Even* 8276
9600 Driven Inverted None 16468
9600 Driven Inverted Even* 24660
9600 Open True None 32852
9600 Open True Even* 41044
9600 Open Inverted None 49236
9600 Open Inverted Even* 57428

baud rates below require 8MHz clock or faster
14400 Driven True None 49
14400 Driven True Even* 8241
14400 Driven Inverted None 16433
14400 Driven Inverted Even* 24625
14400 Open True None 32817
14400 Open True Even* 41009
14400 Open Inverted None 49201
14400 Open Inverted Even* 57393

baud rates below require 10MHz clock or faster
19200 Driven True None 32
19200 Driven True Even* 8224
19200 Driven Inverted None 16416
19200 Driven Inverted Even* 24608
19200 Open True None 32800
19200 Open True Even* 40992
19200 Open Inverted None 49184
19200 Open Inverted Even* 57376

baud rates below require 16MHz clock or faster
28800 Driven True None 15
28800 Driven True Even* 8207
28800 Driven Inverted None 16399
28800 Driven Inverted Even* 24591
28800 Open True None 32783
28800 Open True Even* 40975
28800 Open Inverted None 49167
28800 Open Inverted Even 57359

baud rates below require 20MHz clock or faster
38400 Driven True None 6
38400 Driven True Even* 8198
38400 Driven Inverted None 16390
38400 Driven Inverted Even* 24582
38400 Open True None 32774
38400 Open True Even* 40966
38400 Open Inverted None 49158
38400 Open Inverted Even 57350

*Parity is odd when DEFINE SER2_ODD 1 is used.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEFINEs

298 www.melabs.com 2013-03-06

8.7 Defines
DEFINE ADC_BITS 8 'Number of bits in ADCIN result
DEFINE ADC_CLOCK 3 'ADCIN clock source (rc = 3)
DEFINE ADC_SAMPLEUS 50 'ADCIN sampling time in

microseconds (pause after
channel is selected)

DEFINE BUTTON_PAUSE 10 'BUTTON debounce delay in ms
DEFINE CCP1_REG PORTC 'HPWM channel 1 pin port
DEFINE CCP1_BIT 2 'HPWM channel 1 pin bit
DEFINE CCP2_REG PORTC 'HPWM channel 2 pin port
DEFINE CCP2_BIT 1 'HPWM channel 2 pin bit
DEFINE CCP3_REG PORTG 'HPWM channel 3 pin port
DEFINE CCP3_BIT 0 'HPWM channel 3 pin bit
DEFINE CCP4_REG PORTG 'HPWM channel 4 pin port
DEFINE CCP4_BIT 3 'HPWM channel 4 pin bit
DEFINE CCP5_REG PORTG 'HPWM channel 5 pin port
DEFINE CCP5_BIT 4 'HPWM channel 5 pin bit
DEFINE CHAR_PACING 1000 'SEROUT character pacing in us
DEFINE DEBUG_REG PORTB 'DEBUG pin port
DEFINE DEBUG_BIT 0 'DEBUG pin bit
DEFINE DEBUG_BAUD 2400 'DEBUG baud rate
DEFINE DEBUG_MODE 1 'DEBUG mode: 0 = True, 1 =

Inverted
DEFINE DEBUG_PACING 1000 'DEBUG character pacing in us
DEFINE DEBUGIN_REG PORTB 'DEBUGIN pin port
DEFINE DEBUGIN_BIT 0 'DEBUGIN pin bit
DEFINE DEBUGIN_MODE 1 'DEBUGIN mode: 0 = True, 1 =

Inverted
DEFINE HPWM2_TIMER 1 'HPWM channel 2 timer select
DEFINE HPWM3_TIMER 1 'HPWM channel 3 timer select
DEFINE HSER_BAUD 2400 'HSER baud rate
DEFINE HSER_SPBRG 25 'HSER SPBRG init
DEFINE HSER_SPBRGH 0 'HSER SPBRGH init
DEFINE HSER_RCSTA 90h 'HSER receive status init
DEFINE HSER_TXSTA 20h 'HSER transmit status init
DEFINE HSER_EVEN 1 'HSER If even parity desired
DEFINE HSER_ODD 1 'HSER If odd parity desired
DEFINE HSER_BITS 9 'HSER Use for 8 bits + parity
DEFINE HSER_CLROERR 1 'Automatically clear HSERIN

overflow errors
DEFINE HSER_PORT 1 'HSER port to use on devices

with more than one
DEFINE HSER2_BAUD 2400 'HSER2 baud rate
DEFINE HSER2_SPBRG 25 'HSER2 SPBRG2 init
DEFINE HSER2_SPBRGH 0 'HSER2 SPBRGH2 init
DEFINE HSER2_RCSTA 90h 'HSER2 receive status init
DEFINE HSER2_TXSTA 20h 'HSER2 transmit status init
DEFINE HSER2_EVEN 1 'HSER2 If even parity desired

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEFINEs

2013-03-06 www.melabs.com 299

DEFINE HSER2_ODD 1 'HSER2 If odd parity desired
DEFINE HSER2_BITS 9 'HSER2 Use for 8 bits + parity
DEFINE HSER2_CLROERR 1 'Automatically clear HSERIN2

overflow errors
DEFINE I2C_HOLD 1 'I2CREAD/WRITE Pause I2C

transmission while clock held
low

DEFINE I2C_INTERNAL 1 'I2CREAD/WRITE Use for internal
EEPROM on PIC16CE and PIC12CE

DEFINE I2C_SCLOUT 1 'I2CREAD/WRITE Set serial clock
bipolar instead of open-
collector

DEFINE I2C_SLOW 1 'I2CREAD/WRITE Use for >8MHz OSC
with standard speed devices

DEFINE I2C_SCL PORTA,1 'I2CREAD/WRITE For 12-bit core
only

DEFINE I2C_SDA PORTA,0 'I2CREAD/WRITE For 12-bit core
only

DEFINE ICD_USED 1 'Place a nop in location-0 of
code space

DEFINE INTHAND Label 'Assign assembler interrupt
handler label

DEFINE INTLHAND Label 'Assign assembler low priority
interrupt handler label for
PIC18

DEFINE LCD_DREG PORTA 'LCDOUT/IN data port
DEFINE LCD_DBIT 0 'LCDOUT/IN data starting bit 0

or 4
DEFINE LCD_RSREG PORTA 'LCDOUT/IN register select port
DEFINE LCD_RSBIT 4 'LCDOUT/IN register select bit
DEFINE LCD_EREG PORTB 'LCDOUT/IN enable port
DEFINE LCD_EBIT 3 'LCDOUT/IN enable bit
DEFINE LCD_RWREG PORTE 'LCDOUT/IN read/write port
DEFINE LCD_RWBIT 2 'LCDOUT/IN read/write bit
DEFINE LCD_BITS 4 'LCDOUT/IN bus size 4 or 8
DEFINE LCD_LINES 2 'LCDOUT/IN Number lines on LCD
DEFINE LCD_COMMANDUS 2000 'LCDOUT/IN Command delay time in

us
DEFINE LCD_DATAUS 50 'LCDOUT/IN Data delay time in us
DEFINE LOADER_USED 1 'Bootloader is being used
DEFINE NO_CLEAR_STKPTR 1 'See RESUME Label
DEFINE NO_CLRWDT 1 'Don’t insert CLRWDTs
DEFINE OSC 4 'Oscillator speed in MHz:

3(3.58) 4 8 10 12 16 20 24 25 32
33 40 48 64

DEFINE OSCCAL_1K 1 'Set OSCCAL for 1K PIC12
DEFINE OSCCAL_2K 1 'Set OSCCAL for 2K PIC12
DEFINE PULSIN_MAX 65535 'Maximum PULSIN/RCTIME count
DEFINE RESET_ORG 0h 'Change reset address for PIC18

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

DEFINEs

300 www.melabs.com 2013-03-06

DEFINE SER2_BITS 8 'Set number of data bits for
SERIN2 and SEROUT2

DEFINE SER2_ODD 1 'Set odd parity for SERIN2 and
SEROUT2

DEFINE SHIFT_PAUSEUS 50 'Slow down the SHIFTIN and
SHIFTOUT clock

DEFINE USE_LFSR 1 'Use PIC18 LFSR instruction
DEFINE WRITE_INT 1 'Disable/enable global

interrupts during WRITE
DEFINE XINXLAT_OFF 1 'Don’t translate XIN commands to

BS2 format
DEFINE XOUTXLAT_OFF 1 'Don’t translate XOUT commands

to BS2 format

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Reserved Words

2013-03-06 www.melabs.com 301

8.8 Reserved Words
#DEFINE
#ELSE
#ENDIF
#ERROR
#IF
#IFDEF
#IFNDEF
#MSG
#WARNING
ABS
ADCIN
AND
ANDNOT
ARRAYREAD
ARRAYWRITE
ASM
ATN
BANK0
BANK1
BANK2
BANK3
BANK4
BANK5
BANK6
BANK7
BANK8
BANK9
BANK10
BANK11
BANK12
BANK13
BANK14
BANK15
BANKA
BIN
BIN1
BIN2
BIN3
BIN4
BIN5
BIN6
BIN7
BIN8
BIN9
BIN10
BIN11
BIN12
BIN13

BIN14
BIN15
BIN16
BIN17
BIN18
BIN19
BIN20
BIN21
BIN22
BIN23
BIN24
BIN25
BIN26
BIN27
BIN28
BIN29
BIN30
BIN31
BIN32
BIT
BIT0
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
BIT9
BIT10
BIT11
BIT12
BIT13
BIT14
BIT15
BIT16
BIT17
BIT18
BIT19
BIT20
BIT21
BIT22
BIT23
BIT24
BIT25

BIT26
BIT27
BIT28
BIT29
BIT30
BIT31
BRANCH
BRANCHL
BUTTON
BYTE
BYTE0
BYTE1
BYTE2
BYTE3
CALL
CASE
CLEAR
CLEARWDT
CON
COS
COUNT
DATA
DCD
DEBUG
DEBUGIN
DEC
DEC1
DEC2
DEC3
DEC4
DEC5
DEC6
DEC7
DEC8
DEC9
DEC10
DEFINE
DIG
DISABLE
DIV32
DO
DTMFOUT
EEPROM
ELSE
ELSEIF
ENABLE

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Reserved Words

302 www.melabs.com 2013-03-06

END
ENDASM
ENDIF
ERASECODE EXIT
EXT
FLAGS
FOR
FREQOUT
GOP
GOSUB
GOTO
HEX
HEX1
HEX2
HEX3
HEX4
HEX5
HEX6
HEX7
HEX8
HIGH
HIGHBYTE
HIGHWORD
HPWM
HSERIN
HSERIN2
HSEROUT
HSEROUT2
HYP
I2CREAD
I2CWRITE
IBIN
IBIN1
IBIN2
IBIN3
IBIN4
IBIN5
IBIN6
IBIN7
IBIN8
IBIN9
IBIN10
IBIN11
IBIN12
IBIN13
IBIN14
IBIN15

IBIN16
IBIN17
IBIN18
IBIN19
IBIN20
IBIN21
IBIN22
IBIN23
IBIN24
IBIN25
IBIN26
IBIN27
IBIN28
IBIN29
IBIN30
IBIN31
IBIN32
IDEC
IDEC1
IDEC2
IDEC3
IDEC4
IDEC5
IDEC6
IDEC7
IDEC8
IDEC9
IDEC10
IF
IHEX
IHEX1
IHEX2
IHEX3
IHEX4
IHEX5
IHEX6
IHEX7
IHEX8
INCLUDE
INPUT
INTERRUPT
IS
ISBIN
ISBIN1
ISBIN2
ISBIN3
ISBIN4 ISBIN5

ISBIN6
ISBIN7
ISBIN8
ISBIN9
ISBIN10
ISBIN11
ISBIN12
ISBIN13
ISBIN14
ISBIN15
ISBIN16
ISBIN17
ISBIN18
ISBIN19
ISBIN20
ISBIN21
ISBIN22
ISBIN23
ISBIN24
ISBIN25
ISBIN26
ISBIN27
ISBIN28
ISBIN29
ISBIN30
ISBIN31
ISBIN32
ISDEC
ISDEC1
ISDEC2
ISDEC3
ISDEC4
ISDEC5
ISDEC6
ISDEC7
ISDEC8
ISDEC9
ISDEC10
ISHEX
ISHEX1
ISHEX2
ISHEX3
ISHEX4
ISHEX5
ISHEX6
ISHEX7
ISHEX8

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Reserved Words

2013-03-06 www.melabs.com 303

LCDIN
LCDOUT
LET
LIBRARY
LONG
LOOKDOWN
LOOKDOWN2
LOOKUP
LOOKUP2
LOOP
LOW
LOWBYTE
LOWWORD
MAX
MIN
NAP
NCD
NEXT
NOT
OR
ORNOT
OUTPUT
OWIN
OWOUT
PAUSE
PAUSEUS
PEEK
PEEKCODE
PIN
POKE
POKECODE
POT
PULSIN
PULSOUT
PWM
R0
R1
R2
R3
R4
R5
R6
R7
R8
RANDOM
RB1**
RB2**

RCTIME
READ
READCODE REM
REP
REPEAT
RESUME
RETURN
REV
REVERSE
RM1
RM2
RR1
RR2
RS1***
RS2***
SBIN
SBIN1
SBIN2
SBIN3
SBIN4
SBIN5
SBIN6
SBIN7
SBIN8
SBIN9
SBIN10
SBIN11
SBIN12
SBIN13
SBIN14
SBIN15
SBIN16
SBIN17
SBIN18
SBIN19
SBIN20
SBIN21
SBIN22
SBIN23
SBIN24
SBIN25
SBIN26
SBIN27
SBIN28
SBIN29
SBIN30
SBIN31

SBIN32
SDEC
SDEC1
SDEC2
SDEC3
SDEC4
SDEC5
SDEC6
SDEC7
SDEC8
SDEC9
SDEC10
SELECT
SERIN
SERIN2
SEROUT
SEROUT2
SHEX
SHEX1
SHEX2
SHEX3
SHEX4
SHEX5
SHEX6
SHEX7
SHEX8
SHIFTIN
SHIFTOUT
SIN
SKIP
SLEEP
SOFT_STACK*
SOFT_STACK
_PTR*
SOUND
SQR
STEP
STOP
STR
SWAP
SYMBOL
SYSTEM
THEN
TO
TOGGLE
UNTIL
USBIN

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Reserved Words

304 www.melabs.com 2013-03-06

USBINIT
USBOUT
USBSERVICE
USER
VAR
WAIT
WAITSTR
WEND
WHILE
WORD
WORD0
WORD1
WRITE
WRITECODE
XIN
XOR
XORNOT

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ASCII Conversion Chart

2013-03-06 www.melabs.com 305

8.9 ASCII Conversion Chart
Non-printing ASCII codes:

Dec Hex Abbr Description
0 $0 NUL Null character
1 $1 SOH Start of Header
2 $2 STX Start of Text
3 $3 ETX End of Text
4 $4 EOT End of Transmission
5 $5 ENQ Enquiry
6 $6 ACK Acknowledgment
7 $7 BEL Bell
8 $8 BS Backspace
9 $9 HT Horizontal Tab
10 $0A LF Line feed
11 $0B VT Vertical Tab
12 $0C FF Form feed
13 $0D CR Carriage return[g]
14 $0E SO Shift Out
15 $0F SI Shift In
16 $10 DLE Data Link Escape
17 $11 DC1 Device Control 1 (oft. XON)
18 $12 DC2 Device Control 2
19 $13 DC3 Device Control 3 (oft. XOFF)
20 $14 DC4 Device Control 4
21 $15 NAK Negative Acknowledgement
22 $16 SYN Synchronous idle
23 $17 ETB End of Transmission Block
24 $18 CAN Cancel
25 $19 EM End of Medium
26 $1A SUB Substitute
27 $1B ESC Escape[i]
28 $1C FS File Separator
29 $1D GS Group Separator
30 $1E RS Record Separator
31 $1F US Unit Separator

127 $7F DEL Delete

Continued…

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

ASCII Conversion Chart

306 www.melabs.com 2013-03-06

Printable ASCII codes:

Dec Hex Glyph

Dec Hex Glyph

Dec Hex Glyph
32 $20 (space)

64 $40 @

96 $60 `

33 $21 !

65 $41 A

97 $61 a
34 $22 "

66 $42 B

98 $62 b

35 $23 #

67 $43 C

99 $63 c
36 $24 $

68 $44 D

100 $64 d

37 $25 %

69 $45 E

101 $65 e
38 $26 &

70 $46 F

102 $66 f

39 $27 '

71 $47 G

103 $67 g
40 $28 (

72 $48 H

104 $68 h

41 $29)

73 $49 I

105 $69 i
42 $2A *

74 $4A J

106 $6A j

43 $2B +

75 $4B K

107 $6B k
44 $2C ,

76 $4C L

108 $6C l

45 $2D -

77 $4D M

109 $6D m
46 $2E .

78 $4E N

110 $6E n

47 $2F /

79 $4F O

111 $6F o
48 $30 0

80 $50 P

112 $70 p

49 $31 1

81 $51 Q

113 $71 q
50 $32 2

82 $52 R

114 $72 r

51 $33 3

83 $53 S

115 $73 s
52 $34 4

84 $54 T

116 $74 t

53 $35 5

85 $55 U

117 $75 u
54 $36 6

86 $56 V

118 $76 v

55 $37 7

87 $57 W

119 $77 w
56 $38 8

88 $58 X

120 $78 x

57 $39 9

89 $59 Y

121 $79 y
58 $3A :

90 $5A Z

122 $7A z

59 $3B ;

91 $5B [

123 $7B {
60 $3C <

92 $5C \

124 $7C |

61 $3D =

93 $5D]

125 $7D }
62 $3E >

94 $5E ^

126 $7E ~

63 $3F ?

95 $5F _

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Glossary

2013-03-06 www.melabs.com 307

8.10 Glossary
alias An alternate name assigned to a previously existing

entity.
ASCII Acronym for the American Standard Code for

Information Interchange. Pronounced ask-ee, ASCII
is a code for representing English characters as
numbers.

assembler A PC software application that converts Assembly
Language to machine language. In this manual,
"assembler" usually refers to the MPASM software
from Microchip.

Assembly Language The programming language that corresponds most
closely with machine language codes. Also referred
to as "Assembly". This language is specific to a
microcontroller and its instructions are detailed in the
microcontroller datasheet.

assembly 1. Assembly Language (when capitalized) 2. The
process of converting an Assembly Language
program to machine language.

binary Base-2 number system in which there are only two
possible values for each digit: 0 and 1.

BIT The smallest element of computer storage. It is a
single digit in a binary number (0 or 1). BIT is also a
variable type in PBP.

bitwise Dealing with bits and binary states instead of
numbers or logic.

Boolean Of or relating to a combinatorial system devised by
George Boole that combines propositions with the
logical operators AND and OR and IF THEN and
EXCEPT and NOT

BYTE A numeric entity composed of 8 binary bits. An 8-bit,
unsigned variable type in PBP

Code Space The area of memory in a PIC MCU that holds the
program code.

comment Notes placed in a program for the benefit of humans
that view the program. Comments are not passed to
the microcontroller.

http://www.melabs.com/
http://www.pcmag.com/encyclopedia_term/0,2542,t=bit&i=38671,00.asp

PICBASIC PRO™ Compiler REFERENCE MANUAL

Glossary

308 www.melabs.com 2013-03-06

compiler A PC software application that converts a high-level
language like BASIC to Assembly Language. In this
manual, "compiler" usually refers to the PICBASIC
PRO Compiler from microEngineering Labs.

compile-time Acting during compile, and not executed as a
command when the program is running on the
microcontroller.

constant A name that stands for a value that is defined in the
program. The value is substituted in place of the
name when the program is compiled and
assembled. It is not stored in RAM and cannot be
changed during program execution.

Data Space An area of memory in a PIC MCU that is intended for
powered-down storage or values. Data Space is
accessed in PBP using EEPROM, DATA, READ and
WRITE commands.

debug To gather the information necessary to solve
problems encountered when a program executes.
(Not to be confused with PBP's DEBUG command,
which simply outputs serial data. The DEBUG
command used to be the primary means of
debugging, but this is no longer the case.)

debugger A tool with which the execution of the program is
slowed, controlled, or simulated in order to test the
program and gather information.

decimal 1. Base-10 number system that humans use in
everyday life. 2. The "dot" in a base-10 number that
separates the integer portion from the fractional
portion.

device programmer A tool that "burns" the machine language code into
the PIC microcontroller.

directive An instruction intended for the compiler or
assembler. Affects the resulting compiled or
assembled code, but does not correspond to a
command that is executed when the microcontroller
runs.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Glossary

2013-03-06 www.melabs.com 309

EEPROM A type of memory that holds data without power and
can be erased and written at will. Stands for
Electrically Erasable/Programmable Read Only
Memory. There is a PBP command called
EEPROM, and EEPROM may be used
synonymously for "Data Space".

expression A variable, constant, or combination thereof that
represents a stored or calculated value.

hex see hexadecimal
hexadecimal Base-16 number system in which each digit may

represent a value of 0-15, represented by 0-9 with A-
F standing in for values 10-15. Each hexadecimal
digit can represent a 4-bit binary value.

IDE Integrated Development Environment – The
software environment that serves as code editor and
controls the various programming tools to
accomplish software development.

interrupt The use of a predefined signal or condition that halts
normal execution in favor of a special purpose
routine that is assigned high priority.

keyword Any word that has special meaning to PBP.
label A word that marks a location in a program.
least-significant In reference to binary numbers, the bit or group of

bits that include the "ones" bit. The rightmost bit or
group of bits when a binary number is written.

LONG A numeric entity composed of 32 binary bits. A 32-
bit, signed variable type in PBP

Microchip The company that manufactures PIC
microcontrollers. They also provide the MPLAB and
MPASM software.

modifier A keyword that in some manner changes the
interpretation or behavior associated with a
command or variable that is written either before or
after the modifier.

most-significant in reference to binary numbers, the bit or group of
bits that include the bit that signifies the highest
power of two. The leftmost bit or group of bits when
a binary number is written.

MPASM The assembler provided free of charge by Microchip.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Glossary

310 www.melabs.com 2013-03-06

MPASMWIN see MPASM
MPASMX see MPASM
MPLAB Software application provided free of charge by

Microchip for PIC MCU development. MPLAB
includes MPASM, which allows Assembly Language
development. High-level languages such as PBP
can be installed in MPLAB. MPLAB also serves as
the control interface for Microchip's device
programmers and debuggers.

nibble A 4-bit binary quantity, most often used to refer to
the most-significant or least-significant 4-bits of an 8-
bit BYTE. A single hexadecimal digit represents one
nibble of binary. Not a variable type in PBP.

overflow The event taking place when a value in a variable is
increased beyond the capacity of the variable type,
resulting in an incorrect result.

PBPL PBP in LONG mode. Only available for devices with
prefix PIC18. When used, LONG variables are
available and some commands and operators may
work differently than in PBPW.

PBPW PBP in WORD mode. When used, LONG variables
are not available and some commands and
operators may work differently than in PBPL.

PBPX The name of the executable file that invokes PBP.
PM The assembler created by microEngineering Labs

and included with PBP. This assembler should be
considered obsolete and MPASM should be used
instead.

programmer YOU. The person who writes the program.
RAM The area of memory in a PIC MCU that is used to

hold variables. Accessing RAM is faster than
accessing other memory areas, and values in RAM
are lost when power is removed.

register An 8-bit memory location that performs a special
function in a microcontroller. Registers (Microchip
calls them SFRs) are built into the microcontrollers
and their functions are detailed in the datasheet
published for the specific device.

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Glossary

2013-03-06 www.melabs.com 311

run-time Executed by the microcontroller when the program
runs.

SFR Special Function Register – see register
signed Capable of representing or processing negative

numbers as well as positive.
two's-complement A system that allows negative numbers to be

represented in binary.
typecasting Specifying the variable type to the compiler.
underflow The event taking when a value in an unsigned

variable is decreased below zero (negative number),
or when a signed variable is decreased below its
limit value in the negative, resulting in an incorrect
result.

unsigned Only capable of representing or processing positive
numbers. Negative numbers are invalid in unsigned
variables or processes.

variable A name that stands for a value that is stored in RAM
and can be read and changed during program
execution

WORD A numeric entity composed of 16 binary bits. A 16-
bit, unsigned variable type in PBP

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

312 www.melabs.com 2013-03-06

8.11 Index

#CONFIG · 100
#DEFINE · 102
#ERROR · 104
#IF · 105
#IFDEF · 107
#IFNDEF · 108
#MSG · 109
#WARNING · 110

@

@ · 115

<

<< · 82

>

>> · 83

1

12-Bit Instruction Set limitations · 289
1Wire protocol · 185, 186

A

ABS · 74

absolute value · 74
access pins with variable · 279
ADC · 116

troubleshooting · 285, 287
ADCIN · 116
aeusart · 150, 153, 154, 156
aliases · 29
analog conversion · 116

troubleshooting · 285, 287
analog input configuration · 282
apostrophe · 60
arc-tangent · 74
array variable · 32

advanced techniques · 275
handling mechanism · 275
parent/child arrays · 277

ARRAYREAD · 118
ARRAYWRITE · 119
ASCII · 42, 305
ASM · 120
assembler · 12

selecting · 294
Assembly Language · 115, 120, 126, 263
ATN · 74
auto-repeat · 123

B

BANK · 40
BANKA · 40
BIN · 40, 45, 53
BIN1-BIN32 · 40
BIT · 32
BIT0-BIT31 · 40
bitwise operators · 78
bitwise vs logical · 87

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

2013-03-06 www.melabs.com 313

Boolean operations · 78
BRANCH · 121
branching · 183
BRANCHL · 122
bs1defs.bas · 295
bs2defs.bas · 295
BUTTON · 123
BYTE · 32
BYTE0-BYTE3 · 40

C

CALL · 126
case sensitivity · 61
CLEAR · 127
CLEARWDT · 128
clock · 26
code page · 266

boundary · 266
code space · 141, 190, 192, 201, 235
command line operation · 290
commands · 112
commands on multiple lines · 64
comment character · 60
comments · 60
comparison · 164
comparison operators · 84
compiler · 12
compile-time constant · 102
compile-time directives · 91
compound conditionals · 87
CON · 39
concatenation · 65
conditional compilation · 91, 105, 107
conditionals · 164

troubleshooting · 287
configuration · 100, 281

for multiple devices · 101
configuration directives · 100

constant · 39
COS · 74
cosine · 74
COUNT · 129
crossing code page boundary · 266
custom compiler messages · 109
customizing error messages · 104, 110

D

DATA · 130
data direction · 23, 166, 184, 205, 284
data space · 130, 139
datasheet · 16
DCD · 74
debounce · 123
DEBUG · 131
debugger · 12

in MPLAB · 270
debugging tips · 281
DEBUGIN · 133
DEC · 40, 44, 51
DEC1-DEC10 · 40
decimal digit · 75
DEFINE · 26, 298

ADC_BITS · 116, 285
ADC_CLOCK · 117, 285
ADC_SAMPLEUS · 117
BUTTON_PAUSE · 123
CCPx_BIT · 148, 287
CCPx_REG · 148, 287
CHAR_PACING · 214
DEBUG_BAUD · 131, 134
DEBUG_BIT · 131
DEBUG_MODE · 131
DEBUG_PACING · 132
DEBUG_REG · 131
DEBUGIN_BIT · 134
DEBUGIN_MODE · 134

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

314 www.melabs.com 2013-03-06

DEBUGIN_REG · 134
HSER_BAUD · 150, 154
HSER_BITS · 151, 155
HSER_CLROERR · 151
HSER_EVEN · 151, 155
HSER_ODD · 151, 155
HSER_RCSTA · 150, 154
HSER_SPBRG · 150, 154
HSER_SPBRGH · 150, 154
HSER_TXSTA · 150, 154
HSER2_BAUD · 153, 156
HSER2_BITS · 153, 156
HSER2_CLROERR · 153
HSER2_EVEN · 153, 156
HSER2_ODD · 153, 156
HSER2_RCSTA · 153, 156
HSER2_SPBRG · 153, 156
HSER2_SPBRGH · 153, 156
HSER2_TXSTA · 153, 156
I2C_HOLD · 159, 163
I2C_INTERNAL · 159, 162
I2C_SCL · 157, 161
I2C_SCLOUT · 159, 163
I2C_SDA · 157, 161
I2C_SLOW · 159, 162
ICD_USED · 271
INTHAND · 249
INTLHAND · 249
LCD_BITS · 170, 173
LCD_COMMANDUS · 170, 173
LCD_DATAUS · 170, 173
LCD_DBIT · 170, 173
LCD_DREG · 170, 173
LCD_EBIT · 170, 173
LCD_EREG · 170, 173
LCD_LINES · 170, 173
LCD_RSBIT · 170, 173
LCD_RSREG · 170, 173
LCD_RWBIT · 167
LCD_RWREG · 167

list · 298
NO_CLEAR_STKPTR · 203
NO_CLRWDT · 128
OSC · 26, 281
OSCCAL_1K · 283
SER2_BITS · 210, 217
SER2_ODD · 210, 216
SHIFT_PAUSEUS · 221, 223
WRITE_INT · 234, 236
XINXLAT_OFF · 238
XOUTXLAT_OFF · 240

delay · 187, 188
device configuration · 100, 281

for multiple devices · 101
device families · 17
device prefix · 17
device programmer · 12
directives · 91
DISABLE · 92, 244
DISABLE DEBUG · 93
DISABLE INTERRUPT · 94
display · 167, 168
division · 73, 75
DO · 136
DTMF tones · 138
DTMFOUT · 138
duty cycle · 148

E

editing programs · 14
eeprom · 130, 139
EEPROM · 139
ELSE · 164
ELSEIF · 164
ENABLE · 95, 244
ENABLE DEBUG · 96
ENABLE INTERRUPT · 97
END · 140

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

2013-03-06 www.melabs.com 315

ENDASM · 120
ENDIF · 164
environment variables · 294
ERASECODE · 141
eusart · 150, 153, 154, 156
EXIT · 142

F

FOR..NEXT · 143
formatting strings · 51
FREQOUT · 144
frequency generation · 144
frequency measurement · 129

G

generating compile errors · 104
generating compiler messages · 109
generating compiler warnings · 110
glossary · 307
GOSUB · 145
GOTO · 146

H

hardware stack · 273
HEX · 40, 46, 54
HEX1-HEX8 · 40
hierarchal order · 70, 287
HIGH · 147
home automation · 237, 239
HPWM · 148
HSERIN · 150
HSERIN2 · 153
HSEROUT · 154
HSEROUT2 · 156

HYP · 76
hypotenuse · 76

I

I/O pins · 23
characteristics · 25

I2C · 157, 161
I2CREAD · 157
I2CWRITE · 161
IBIN · 40
ICD · 12
IDE · 12, 14
IF..THEN · 164
INCLUDE · 66
index value · 37
INPUT · 166
input pins · 23, 166, 205

characteristics · 25
troubleshooting · 282, 284, 286

instruction set · 17
Integrated Development Environment ·

12, 14
internal oscillator · 282
interrupts · 203, 244

14-Bit Instruction Set · 257
associated DEFINEs · 249
Enhanced 14-Bit Instruction Set · 256
in Assembly Language · 248
in BASIC · 244
latency concerns · 246
PIC18 · 252
priority in PIC18 · 252

interrupts in BASIC · 99
intializing variables · 127

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

316 www.melabs.com 2013-03-06

J

jump to label · 146

L

labels · 31
latency · 246
lcd · 167, 168
LCDIN · 167
LCDOUT · 168
LET · 174
limiting values · 76
line extension · 64
logical operators · 87
logical vs bitwise · 87
LONG · 32, 41
LOOKDOWN · 175
LOOKDOWN2 · 176
LOOKUP · 177, 178
lookup table · 177, 178, 192
LOOP · 136
LOW · 179
low-power mode · 180, 224

M

MAX · 76
measuring pulse width · 195, 199
melabs · 19
MicroCode Studio · 14
microsecond delay · 188
millisecond delay · 187
MIN · 76
modedefs.bas · 295
modifiers · 33
MPLAB · 14, 270

multiple commands on line · 65
multiplication · 71
multiplying fractions · 72

N

NAP · 180
NCD · 77
nesting GOSUBs · 273
non-volatile memory · 139
number formats · 58

O

ON DEBUG · 98
ON GOSUB · 182
ON GOTO · 183
ON INTERRUPT · 99, 244
operators · 67

* · 71
** · 72
*/ · 72
/ · 73
// · 73
ABS · 74
ATN · 74
bitwise · 78
Boolean · 78
comparison · 84
cosine · 74
DCD · 74
DIG · 75
DIV32 · 75
division · 73
HYP · 76
logical · 87
math · 71
MAX · 76

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

2013-03-06 www.melabs.com 317

MIN · 76
modulus · 73
multiplication · 71
NCD · 77
remainder · 73
REV · 77
SIN · 77

oscillator · 26
internal · 282

OUTPUT · 184
output pins · 23, 147, 179, 184, 205, 228

characteristics · 25
troubleshooting · 283, 284, 286

overrunning arrays · 275
overview of commands · 112
OWIN · 185
OWOUT · 186

P

parsing strings · 44
PAUSE · 187
PAUSEUS · 188
PBPL · 15
PBPW · 15
PEEK · 189
PEEKCODE · 190
POKE · 191
POKECODE · 192
POT · 193
potentiometer · 116, 193
preprocessor directives · 91
program memory · 141, 190, 192, 201,

235
program organization · 22
programmer · 12
pulse width modulation · 197
PULSIN · 195
PULSOUT · 196

pushbutton input · 123
pwm · 148, 197
PWM · 197

R

RAM allocation · 268
RAM bank · 266
RANDOM · 198
RCTIME · 199
READ · 200
READCODE · 201
reading voltage · 116
Read-Modify-Write · 283
registers · 16, 59
remainder · 73
REP · 40, 56
REPEAT..UNTIL · 202
reserved words · 301
RESUME · 203, 244
RETURN · 204
REV · 77
REVERSE · 205
reversing bits · 77
RMW · See Read-Modify-Write
RS-232 · 131, 133, 207, 209, 213, 215

S

SBIN · 40
scalar variable · 32
SDEC · 40
SELECT CASE · 206
selecting assembler · 294
semicolon · 60
serial communication · 131, 133, 150,

153, 154, 156, 207, 209, 213, 215
SERIN · 207

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

318 www.melabs.com 2013-03-06

SERIN2 · 209
modes · 296

SEROUT · 213
SEROUT2 · 215

modes · 296
SFRs · 16, 59
shift left · 82
shift right · 83
SHIFTIN · 219
SHIFTOUT · 222
SIN · 77
sine · 77
SKIP · 40, 47
sleep · 180, 224
SLEEP · 224
SOUND · 225
spaces · 62
SPI · 219, 222
SQR · 77
square root · 77
stack · 273
STOP · 226
STR · 40, 47, 56
strings · 42

formatting · 51, 119
in arrays · 118, 119
parsing · 44, 118

subroutines · 145, 204
SWAP · 227
synchronous serial · 219, 222
syntax · 22
SYSTEM · 40
system clock · 26
system overview · 12

T

table lookup · 177, 178, 192
tabs · 62

technical support · 20
terminating loops · 142
timed pulse · 196
timing accuracy · 26
TOGGLE · 228
troubleshooting · 281
twos-complement · 39, 74

U

underscore · 64
UNTIL · 136
usart · 150, 153, 154, 156
USB · 229, 230, 231, 232
USBIN · 229
USBINIT · 230
USBOUT · 231
USBSERVICE · 232

V

variable modifiers · 36
variable to specify pin · 279
variables · 32

initializing · 127, 281
placement in memory · 268

W

WAIT · 40, 48
WAITSTR · 40, 49
watchdog timer · 128
WHILE · 136
WHILE..WEND · 233
white space · 62
WORD · 32, 41
WORD0-WORD1 · 40

http://www.melabs.com/

PICBASIC PRO™ Compiler REFERENCE MANUAL

Index

2013-03-06 www.melabs.com 319

WRITE · 234
WRITECODE · 235

X

X-10 · 237, 239
XIN · 237
XOUT · 239

http://www.melabs.com/

	Chapter 1: Vital Information
	1.1 System Overview
	1.2 Integrated Development Environment (IDE)
	1.2.1 MPLAB
	1.2.2 MicroCode Studio
	1.2.3 Other IDEs

	1.3 Compile Modes PBPW and PBPL
	1.4 Microchip Datasheets
	1.5 Microchip Nomenclature
	1.6 Manual Conventions and Notes
	1.6.1 Command Prototypes
	1.6.2 Special Terminology and Acronyms
	1.6.3 Number formats
	1.6.4 Comments in code examples

	1.7 Technical Support
	1.7.1 Support Requirements

	Chapter 2: PBP Syntax and Programming
	2.1 Program Organization (Example)
	2.2 I/O Pins
	2.2.1 Data Direction
	2.2.2 Aliasing
	2.2.3 Use in High-Level Commands
	2.2.4 Additional Configuration
	2.2.5 Pin Characteristics

	2.3 DEFINEs
	2.3.1 DEFINE OSC
	2.3.2 Global DEFINEs
	2.3.3 DEFINEs defined

	2.4 Aliases
	2.5 Labels
	2.6 Variables
	2.6.1 Creating Scalar Variables
	2.6.2 Creating Array Variables
	2.6.3 Using Scalar Variables
	2.6.4 Using Array Variables

	2.7 Constants
	2.8 Modifiers
	2.8.1 Modifiers used when creating variables
	2.8.2 Modifiers that access binary subsets of numeric values
	2.8.3 Modifiers for parsing and formatting ASCII strings
	2.8.4 Modifiers for specifying variable types in data space

	2.9 ASCII and Strings
	2.10 Input Modifiers for Parsing Strings
	2.10.1 DEC
	2.10.2 BIN
	2.10.3 HEX
	2.10.4 SKIP
	2.10.5 STR
	2.10.6 WAIT
	2.10.7 WAITSTR

	2.11 Output Modifiers for Formatting Strings
	2.11.1 DEC
	2.11.2 BIN
	2.11.3 HEX
	2.11.4 REP
	2.11.5 STR

	2.12 Numbers
	2.13 Registers
	2.14 Comments
	2.15 Case Sensitivity
	2.15.1 DEFINEs
	2.15.2 Variables

	2.16 White Space
	2.16.1 Tabbing For Readability

	2.17 Line-Extension (_)
	2.18 Line-Concatenation (:)
	2.19 INCLUDE

	Chapter 3: Operators
	3.1 Math Operators
	3.1.1 Multiplication
	3.1.2 '*/' and '**' Special Multiplication
	3.1.3 Division
	3.1.4 Remainder (Modulus)
	3.1.5 ABS
	3.1.6 ATN
	3.1.7 COS
	3.1.8 DCD
	3.1.9 DIG
	3.1.10 DIV32
	3.1.11 HYP
	3.1.12 MAX and MIN
	3.1.13 NCD
	3.1.14 REV
	3.1.15 SIN
	3.1.16 SQR

	3.2 Bitwise Operators
	3.2.1 & Bitwise AND
	3.2.2 | Bitwise OR
	3.2.3 ^ Bitwise EXCLUSIVE OR (XOR)
	3.2.4 ~ Bitwise NOT (INVERT)
	3.2.5 &/ Bitwise NOT AND (NAND)
	3.2.6 |/ Bitwise NOT OR (NOR)
	3.2.7 ^/ Bitwise NOT EXCLUSIVE OR (XNOR)
	3.2.8 << SHIFT LEFT
	3.2.9 >> SHIFT RIGHT

	3.3 Comparison Operators
	3.3.1 Signed vs. Unsigned Comparisons
	3.3.2 Equal To (= or ==)
	3.3.3 Not Equal To (<> or !=)
	3.3.4 Less Than (<)
	3.3.5 Greater Than (>)
	3.3.6 Less Than or Equal To (<=)
	3.3.7 Greater Than or Equal To (=>)

	3.4 Logical Operators
	3.4.1 Using Parentheses
	3.4.2 Logical vs. Bitwise
	3.4.3 AND
	3.4.4 OR
	3.4.5 XOR
	3.4.6 NOT
	3.4.7 ANDNOT
	3.4.8 ORNOT
	3.4.9 XORNOT

	Chapter 4: Directives
	4.1 DISABLE
	4.2 DISABLE DEBUG
	4.3 DISABLE INTERRUPT
	4.4 ENABLE
	4.5 ENABLE DEBUG
	4.6 ENABLE INTERRUPT
	4.7 ON DEBUG
	4.8 ON INTERRUPT
	4.9 #CONFIG...#ENDCONFIG
	4.10 #DEFINE
	4.11 #ERROR
	4.12 #IF…#ELSE…#ENDIF
	4.13 #IFDEF…#ELSE…#ENDIF
	4.14 #IFNDEF…#ELSE…#ENDIF
	4.15 #MSG
	4.16 #WARNING

	Chapter 5: Commands
	5.1 Overview of Commands
	5.2 @
	5.3 ADCIN
	5.4 ARRAYREAD
	5.5 ARRAYWRITE
	5.6 ASM..ENDASM
	5.7 BRANCH
	5.8 BRANCHL
	5.9 BUTTON
	5.10 CALL
	5.11 CLEAR
	5.12 CLEARWDT
	5.13 COUNT
	5.14 DATA
	5.15 DEBUG
	5.16 DEBUGIN
	5.17 DO..LOOP
	5.18 DTMFOUT
	5.19 EEPROM
	5.20 END
	5.21 ERASECODE
	5.22 EXIT
	5.23 FOR..NEXT
	5.24 FREQOUT
	5.25 GOSUB
	5.26 GOTO
	5.27 HIGH
	5.28 HPWM
	5.29 HSERIN
	5.30 HSERIN2
	5.31 HSEROUT
	5.32 HSEROUT2
	5.33 I2CREAD
	5.34 I2CWRITE
	5.35 IF..THEN
	5.36 INPUT
	5.37 LCDIN
	5.38 LCDOUT
	5.39 {LET}
	5.40 LOOKDOWN
	5.41 LOOKDOWN2
	5.42 LOOKUP
	5.43 LOOKUP2
	5.44 LOW
	5.45 NAP
	5.46 ON GOSUB
	5.47 ON GOTO
	5.48 OUTPUT
	5.49 OWIN
	5.50 OWOUT
	5.51 PAUSE
	5.52 PAUSEUS
	5.53 PEEK
	5.54 PEEKCODE
	5.55 POKE
	5.56 POKECODE
	5.57 POT
	5.58 PULSIN
	5.59 PULSOUT
	5.60 PWM
	5.61 RANDOM
	5.62 RCTIME
	5.63 READ
	5.64 READCODE
	5.65 REPEAT..UNTIL
	5.66 RESUME
	5.67 RETURN
	5.68 REVERSE
	5.69 SELECT CASE
	5.70 SERIN
	5.71 SERIN2
	5.72 SEROUT
	5.73 SEROUT2
	5.74 SHIFTIN
	5.75 SHIFTOUT
	5.76 SLEEP
	5.77 SOUND
	5.78 STOP
	5.79 SWAP
	5.80 TOGGLE
	5.81 USBIN
	5.82 USBINIT
	5.83 USBOUT
	5.84 USBSERVICE
	5.85 WHILE..WEND
	5.86 WRITE
	5.87 WRITECODE
	5.88 XIN
	5.89 XOUT

	Chapter 6: Interrupts
	6.1 Interrupts Using ON INTERRUPT
	6.1.1 In Practice
	6.1.2 How ON INTERRUPT Works

	6.2 Interrupts Using Assembly Language
	6.2.1 Checklist
	6.2.2 DEFINEs
	6.2.3 Enabling Interrupts
	6.2.4 Placement of the Assembly Language Routine
	6.2.5 Declaring Special Variables to Save Context
	6.2.6 Access to PBP Variables from the Interrupt Handler
	6.2.7 Time-Sensitive PBP Commands

	6.3 Assembly Interrupts for PIC18 Devices
	6.3.1 Interrupt Priorities
	6.3.2 Saving and Restoring Context
	6.3.3 Example High/Low Priority ISR Framework for PIC18

	6.4 Assembly Interrupts for Enhanced 14-Bit Instruction Set
	6.4.1 Saving and Restoring Context
	6.4.2 Example ISR Framework for Enhanced 14-Bit

	6.5 Assembly Interrupts for 14-Bit Instruction Set
	6.5.1 Declaring Special Variables to Save Context
	6.5.2 Saving and Restoring Context
	6.5.3 Example ISR Framework for the 14-Bit Instruction Set:

	Chapter 7: Advanced Techniques and Concepts
	7.1 In-Line Assembly Language
	7.1.1 Inserting Assembly Code
	7.1.2 Placement of In-line Assembly

	7.2 Code Pages and RAM Banks
	7.3 RAM Allocation
	7.4 MPLAB® Development Environment
	7.4.1 Debugging Tool General Considerations
	7.4.2 Debugging Tool Device-Specific Considerations

	7.5 Hardware Stack
	7.6 Array Handling Mechanism
	7.6.1 The Danger
	7.6.2 Brackets Perform Offsets
	7.6.3 Sub-Arrays within Arrays
	7.6.4 Accessing Arrays as Multiple Variable-Types
	7.6.5 Applying Offsets to Bits within a Variable or Register

	Chapter 8: Appendixes
	8.1 Debugging and Troubleshooting
	8.1.1 Configuration
	8.1.2 Initializing values
	8.1.3 DEFINE OSC
	8.1.4 Analog Inputs
	8.1.5 Internal Oscillator
	8.1.6 Read-Modify-Write
	8.1.7 Data Direction
	8.1.8 Analog Conversion
	8.1.9 I/O pin parameters and limitations
	8.1.10 Piggybacked pin functions
	8.1.11 Pin Relocation and Defines
	8.1.12 Omitting parentheses
	8.1.13 Channel numbers vs. pins
	8.1.14 Hardware Stack
	8.1.15 Overrunning Array Variables

	8.2 12-Bit Instruction Set Considerations
	8.3 PBPX Command Line Operation
	8.4 Specifying Assembler Location with PBP_MPASM
	8.5 defs Include Files
	8.5.1 modedefs.bas
	8.5.2 bs1defs.bas
	8.5.3 bs2defs.bas

	8.6 SERIN2/SEROUT2 Mode List
	8.7 Defines
	8.8 Reserved Words
	8.9 ASCII Conversion Chart
	8.10 Glossary
	8.11 Index

