Everything for Electronics
...

Implementing Circuits on Protoboards

You have found or designed a circuit, and it’s time to build a permanent version of it. You could design and order (or make) a printed circuit board, but that will cost money and/or time. It also makes changes and corrections difficult. The obvious alternative: Implement the circuit on one or several prototyping boards. So, how do you go about building on a protoboard? I’ll describe a sequence of steps here.

...

Copper Cobweb Circuit Construction

Are you bored with conventional two-dimensional circuit layouts, or looking for a way to add an artistic flair to your next project? I’ve taken point-to-point construction style a step further by making it self-supporting, which opens up a wide range of physical circuit topologies. (Point-to-point construction usually uses supporting structures like terminal strips that are functional but not pleasing to the eye.) I call this construction style the copper cobweb. Here’s how to do it.

...

You Don’t Have to Be an Engineer to Design Your Own Electronic Circuits

Most of you have at one time or another thought about designing your own electronics. The thing stopping many of you is the fact that you realize you’re not a “real” graduate engineer. Well, so what? You don’t have to have an EE degree to design. You can do your own design with a little direction. Here’s my approach to it, so you can give it a try.

...

For IoT Projects, Call JSON

Internet-of-Things (IoT) projects that use sensors, actuators, displays, or controllers can easily communicate through an MQTT (Message Queuing Telemetry Transport) server, or broker. The MQTT standard lets devices publish and subscribe to specific topics. When they use the JavaScript Object Notation (JSON) format to exchange information, software can easily interpret or parse it. In this tutorial, I'll explain how to create and parse JSON messages.

...

LEDs for Operational Status and Troubleshooting

Even when a circuit functions as it’s supposed to, it’s not always easy to tell what it’s doing. Plus, waiting for an output (especially if there’s a long delay involved) is not always practical. Conversely, if a circuit does not function, the only means to find out what’s wrong is to troubleshoot it with either a multimeter or oscilloscope. Wouldn’t it be great if the circuit itself could tell us more directly what’s wrong?

...

A Discussion on dBs and RF Power Meters

This article discusses basic theory on the decibel unit and its role in electrical measurements of power, etc. It also describes the construction of an RF power meter which in the past has been difficult to use and expensive to own. With the breakthrough of new ICs in recent years, most of the former problems and expense have been eliminated. This is a simple and inexpensive unit to build, but has the accuracy, resolution, and dynamic range that was only obtainable in lab quality test equipment a decade or so ago. This kind of test equipment is almost mandatory for amateurs, radio frequency work, or test equipment calibration. Also, when built as described, it’s a very professional looking piece of gear that anyone would be proud to display on their test bench.

...

The Story of the Transistor

Life would not be the same without the transistor, which was invented just over seven decades ago. It is considered by researchers and historians to be the most important invention of the 20th century, leading to groundbreaking advances in computing, communications, medicine, and practically every technically related field. In this article, we’ll examine the contributions of the personalities and organizations involved, as well as the impetus that led to this landmark invention.

View More Articles
More Learn Electronics