Get free access to our online edition!

Nuts & Volts Magazine (July 2016)

The Art of Electronics: What Constitutes the Atomic Level?

By Bryan Bergeron    View Digital Edition  

A recurrent theme in my attempt to teach electronics to others is deciding on what constitutes the atomic level of the art; that is, should I discuss the flow of electrons, the fundamentals of Ohm’s Law and discrete components, ICs and other component-level modules, or complete devices at the system level? I have to admit a bias toward low level electron physics, simply because that’s how I was first exposed to electronics — the flow of electrons or positrons across barriers and through various crystalline lattices. However, building up from first principles doesn’t seem to fit with the needs of today’s enthusiasts.

For example, take a typical microcontroller. It would take months of study to fully understand the path of an electron from an input pin, through the hundreds or thousands of gates, to one or more output pins. After all that effort, you’d have no better understanding of how the microcontroller operates. No, in this case, a functional understanding at the device level probably constitutes the atomic level. Sure, there are possible exceptions such as internal pull-up resistors in the I/O but — for the most part — a microcontroller can be considered a black box with signal and power inputs and signal output.

The same can be said for single board computers, from smart phones to handheld games. From a system’s perspective, there’s quite a bit to understand, from both the hardware and software sides. It can take months to fully understand a smartphone platform at a high level, and Ohm’s Law isn’t going to help in the process.

So, are component-level electronics dead? I wouldn’t go that far, but I’d say it has become a niche specialty or interest in the electronics enthusiasts community — akin to those who specialize in tube amplifiers. After all, someone has to work at the component level to design the power supply and other system components in the drones, phones, and other consumer electronics.

Looking at my own work in electronics over the past few decades, I can clearly see the progression from component to system level work. I started out with tube and transistor checkers on my workbench, and spent much of my time adjusting the bias on tubes and trying to figure out whether a blown transistor was an NPN or PNP variety with an ohmmeter.

Later, when I worked on commercial communications gear, I simply swapped out boards to identify the faulty circuit. The board went back to the manufacturer for repair. I didn’t even have to heat up my soldering iron.

Today, I’m more apt to turn on my 3D printer than my hot air reworking station, simply because that’s where the action is. I can spend an afternoon creating a robot platform on my printer or the same amount of time replacing a faulty IC on a circuit board. I feel guilty admitting it, but I now get more satisfaction out of creating something of my own design than in simply reworking a circuit. However, time and money being what they are, it’s simply fiscally irresponsible devoting hours and dollars to repairing something that can be replaced with a few clicks of the mouse, with immediate drop shipping from China.

Today, I’d rather spend my time building and flying a drone, focusing on high level topics such as power supply selection, battery charge duration, and maximizing RF signal strength, instead of focusing on what’s happening in the controller circuit.

Has your interest in electronics evolved over the years, or has it remained steadfast on a particular topic or level? Either way, I’d like to hear your story, and what you’ve concluded from your experience.  NV